Skip to main content
Log in

Markov chain Monte Carlo methods for probabilistic network model determination

  • Published:
Journal of the Italian Statistical Society Aims and scope Submit manuscript

Summary

The predictive performance of a neural network model depends crucially on the net architecture. Although complex models can fit very well the data at hand, their out-of-sample performance is typically very poor. In order to improve the predictive performance of a neural network model, we propose to interpret a neural network as a graphical model with latent variables. The proposed interpretation allows to extend a computational methodology recently proposed in Giudici and Green (1999) to compare alternative network models in terms of their posterior probabilities, and, therefore, to choose the most plausible net architecture. We apply our proposal to a data-set concerned with the analysis of the correlation structure among shares of viewers in the Italian television market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbieri, M. (1996),Metodi MCMC nell’inferenza statistica. Italian Statistical Society monographs, CISU, Roma.

    Google Scholar 

  • BROOKS, S. and GIUDICI, P. (1999), MCMC Convergence Assessment via Two-way ANOVA. To appear inJournal of computational and graphical statistics.

  • CONSONNI, G. and GIUDICI, P. (1997), Modelli di previsione per l’ascolto televisivo. InAtti della riunione specializzata della Società Italiana di Statistica su: La statistica per le imprese, vol. 2, pp. 283–290.

  • Dawid, A. P. andLauritzen, S. L. (1993), Hyper Markov Laws in the statistical analysis of decomposable graphical models.Ann. Statist., 21,1272–317.

    Article  MATH  MathSciNet  Google Scholar 

  • GIUDICI, P. (1997), Modelli grafici e reti neuronali: un confronto preliminare. InLe reti neuronali e la statistica, (A. Bellacicco and C. Lauro editors), 621–628. FrancoAngeIi.

  • Giudici, P. andGreen, P. J. (1999), Decomposable graphical Gaussian model determination.Biometrika, 86, 785–801.

    Article  MATH  MathSciNet  Google Scholar 

  • GIUDICI, P. and STANGHELLINI, E. (1998), Graphical factor analysis models: specification and model comparison. In em Advances in Data Science and Classification (A. Rizzi, M. Vichi and H. Bock editors), 363–368.

  • Green, P. J. (1995), Reversible Jump MCMC Computation and Bayesian Model Determination.Biometrika, 82, 711–732.

    Article  MATH  MathSciNet  Google Scholar 

  • Lauritzen, S. L. (1996),Graphical Models. Oxford: Oxford University Press.

    Google Scholar 

  • Madigan, D. andRaftery, A. E. (1994), Model selection and accounting for model uncertainty in graphical models using Occam’s window.J. Am. Statist. Assoc., 89, 1535–46.

    Article  MATH  Google Scholar 

  • Stanghellini, E. (1997), Identification of a single-factor model using graphical Gaussian rules.Biometrika, 84, 1, 241–4.

    Article  MATH  Google Scholar 

  • Tierney, L. (1994), Markov chains for exploring posterior distributions (with discussion).Annals of statistics, 22, 1701–1762.

    Article  MATH  MathSciNet  Google Scholar 

  • VICARD, P. (2000), On the identification of a single-factor model with correlated residuals.Biometrika, 87.

  • Whittaker, J. (1990),Graphical models in applied multivariate statistics. New York: Wiley.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Giudici.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giudici, P. Markov chain Monte Carlo methods for probabilistic network model determination. J. Ital. Statist. Soc. 7, 171–183 (1998). https://doi.org/10.1007/BF03178927

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178927

Keywords

Navigation