Skip to main content
Log in

Pancreatic duct secretion: experimental methods, ion transport mechanisms and regulation

Secreción pancreática ductular: Métodos experimentales, mecanismos de transporte iónico y regulación (minirrevisión)

  • Minireviews
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The pancreatic ductal tree conveys enzymatic acinar products to the duodenum and secretes the fluid and ionic components of pancreatic juice. The physiology of pancreatic duct cells has been widely studied, but many questions are still unanswered concerning their mechanisms of ionic transport. Differences in the transport mechanisms operating in the ductal epithelium has been described both among different species and in the different regions of the ductal tree. In this review we summarize the methods developed to study pancreatic duct secretion both in vivo and in vitro, the different mechanisms of ionic transport that have been reported to date in the basolateral and luminal membranes of pancreatic ductal cells and the regulation of pancreatic duct secretion by nervous endocrine and paracrine influences.

Resumen

El árbol ductal pancreático transporta las enzimas pancreáticas de origen acinar hasta el duodeno y secreta el componente hidroelectrolítico del jugo pancreático. Aunque existen numerosos estudios sobre la fisiología de las células ductulares pancreáticas todavía quedan muchas cuestiones sin resolver con respecto a los mecanismos de transporte iónico en estas células. Existen diferencias en los mecanismos de transporte iónico en el epitelio ductular, tanto entre las diferentes especies estudiadas como entre las distintas zonas del árbol ductal. En esta revisión se hace un resumen de los diferentes métodos aplicados al estudio de la secreción pancreática ductular, tanto in vivo como in vitro; se describen los distintos mecanismos de transporte iónico, tanto en la membrana basolateral como en la luminal, descritos hasta la fecha en las células ductulares; y, finalmente, se detallan los mecanismos de regulación, nerviosos, endocrinos y paracrinos de la secreción pancreática ductular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abuladze, N., Lee, I., Newman, D., Hwang, J., Boorer, K., Pushkin, A. and Kurtz, I. (1998): Molecular cloning, chromosomal localization, tissue distribution, and functional expression of the human pancreatic sodium bicarbonate cotransporter. J Biol Chem, 273, 17689–17695.

    Article  CAS  PubMed  Google Scholar 

  2. Agbunag, C., Lee, K.E., Buontempo, S. and Bar-Sagi, D. (2006): Pancreatic duct epithelial cell isolation and cultivation in two-dimensional and three-dimensional culture systems. Methods Enzymol, 407, 703–710.

    Article  CAS  PubMed  Google Scholar 

  3. Al-Nakkash, L. and Cotton, C.U. (1997): Bovine pancreatic duct cells express cAMP- and Ca2+-activated apical membrane Cl conductances. Am J Physiol Gastrointest Liver Physiol, 273, 204–216.

    Google Scholar 

  4. Alonso, R.M., Rodríguez, A.M., García, L.J., López, M.A. and Calvo, J.J. (1994): Comparison between the effects of VIP and the novel peptide PACAP on the exocrine pancreatic secretion of the rat. Pancreas, 9, 123–128.

    Article  CAS  PubMed  Google Scholar 

  5. Argent, B.E. and Gray, M.A. (1997): Regulation and formation of fluid and electrolyte secretions by pancreatic ductal epithelium. In “Biliary and Pancreatic Ductal Epithelia: Pathobiology and Pathophysiology” (Sirica, A.E. and Longnecker, D.S., eds.), Dekker, New York, pp. 349–377.

    Google Scholar 

  6. Ashton, N., Argent, B.E. and Green, R. (1991): Characteristics of fluid secretion from isolated rat pancreatic ducts stimulated with secretin and bombesin. J Physiol, 435, 533–546.

    CAS  PubMed  Google Scholar 

  7. Ashton, N., Evans, R.L., Elliott, A.C., Green, R. and Argent, B.E. (1993): Regulation of fluid secretion and intracellular messengers in isolated rat pancreatic ducts by acetylcholine. J Physiol, 471, 549–562.

    CAS  PubMed  Google Scholar 

  8. Becq, F., Fanjul, M., Mahieu, I., Berger, Z., Gola, M. and Hollande, E. (1992): Anion channels in a human pancreatic cancer cell line (Capan-1) of ductal origin. Pflügers Arch, 420, 46–53.

    Article  CAS  PubMed  Google Scholar 

  9. Bertelli, E. and Bendayan, M. (2005): Association between endocrine pancreas and ductal system. More than an epiphenomenon of endocrine differentiation and development. J Histochem Cytochem, 53, 1071–1086.

    Article  CAS  PubMed  Google Scholar 

  10. Buddington, K.K., Cooper, R.C., Pierzynowski, S., Lehman, K., Swaggart, G., Donahoo, J. and Buddington, R.K. (2002): A non-terminal surgical procedure for chronic collection of exocrine pancreatic secretions from unrestrained dogs ( Canis familiaris). Contemp Top Lab Anim Sci, 41, 31–37.

    PubMed  Google Scholar 

  11. Burghardt, B., Elkaer, M.L., Kwon, T.H., Rácz, G.Z., Varga, G., Steward, M.C. and Nielsen, S. (2003): Distribution of aquaporin water channels AQP1 and AQP5 in the ductal system of the human pancreas. Gut, 52, 1008–1016.

    Article  CAS  PubMed  Google Scholar 

  12. Case, R.M. (2006): Is the rat pancreas an appropriate model of the human pancreas?. Pancreatology, 6, 180–190.

    Article  PubMed  Google Scholar 

  13. Case, R.M. and Argent, B.E. (1993): Pancreatic duct cell secretion: control and mechanisms of transport. In “The Pancreas: Biology, Pathobiology and Disease”. (Go, V.L.W., DiMagno, E.P., Gardner, J.D., Lebenthal, E., Reber, H.A. and Scheele, G.A., eds.), Raven Press, New York, pp. 304–350.

    Google Scholar 

  14. Cheng, H.S., Leung, P.Y., Cheng Chew, S.B.C., Leung, P.S., Lam, S.Y., Wong, W.S., Wang, Z.D. and Chan, H.C. (1998): Concurrent and independent HCO3 and Cl secretion in a human pancreatic duct cell line (CAPAN-1). J Membr Biol, 164, 155–167.

    Article  CAS  PubMed  Google Scholar 

  15. Cotton, C.U. (1998): Ion-transport properties of cultured bovine pancreatic duct epithelial cells. Pancreas, 17, 247–255.

    Article  CAS  PubMed  Google Scholar 

  16. Dorwart, M.R., Shcheynikov, N., Yang, D. and Muallem, S. (2008): The solute carrier 26 family of proteins in epithelial ion transport. Physiology, 23, 104–114.

    Article  CAS  PubMed  Google Scholar 

  17. Fanjul, M., Alvarez, L. and Hollande, E. (2007): Expression and subcellular localization of a 35-kDa carbonic anhydrase IV in a human pancreatic ductal cell line (Capan-1). J Histochem Cytochem, 55, 783–794.

    Article  CAS  PubMed  Google Scholar 

  18. Fernández-Salazar, M.P., Pascua, P., Calvo, J.J., López, M.A., Case, R.M., Steward, M.C. and San mechanisms underlying fluid secretion by mouse, rat and guinea-pig pancreatic ducts. J Physiol, 556, 415–428.

  19. Fong, P., Argent, B.E., Guggino, W.B. and Gray, M.A. (2003): Characterization of vectorial chloride transport pathways in the human pancreatic duct adenocarcinoma cell line HPAF. Am J Physiol Cell Physiol, 285, 433–445.

    Google Scholar 

  20. Giebisch, G. (1972): Rehal micropuncture techniques: a symposium. Yale J Biol Med, 45, 191–456.

    Google Scholar 

  21. Githens, S. (1994): Pancreatic duct cell cultures. Annu Rev Physiol, 56, 419–443.

    Article  CAS  PubMed  Google Scholar 

  22. Githens, S., Holmquist, D.R.G., Whelan, J.F. and Ruby, J.R. (1980): Characterization of ducts isolated from the pancreas of the rat. J Cell Biol, 85, 122–135.

    Article  CAS  PubMed  Google Scholar 

  23. Gorelick, F.S. and Jamieson, J.D. (1981): Structure-function relationships of the pancreas. In “Physiology of the Gastrointestinal Tract” (Johnson, L.R., ed.), Raven Press, New York, pp. 773–794.

    Google Scholar 

  24. Gray, M.A., Greenwell, J.R., Garton, A.J. and Argent, B.E. (1990): Regulation of maxi-K+ channels on pancreatic duct cells by cyclic AMP-dependent phosphorylation. J Membr Biol, 115, 203–215.

    Article  CAS  PubMed  Google Scholar 

  25. Gray, M.A., Plant, S. and Argent, B.E. (1993): cAMP-regulated whole cell chloride currents in pancreatic duct cells. Am J Physiol, 264, 591–602.

    Google Scholar 

  26. Gray, M.A., Winpenny, J.P., Porteous, D.J., Dorin, J.R. and Argent, B.E. (1994): CFTR and calcium-activated chloride currents in pancreatic duct cells of a transgenic CF mouse. Am J Physiol, 266, 213–221.

    Google Scholar 

  27. Greeley, T., Shumaker, H., Wang, Z., Schweinfest, C.W. and Soleimani, M. (2001): Downregulated in adenoma and putative anion transporter are regulated by CFTR in cultured pancreatic duct cells. Am J Physiol Gastrointest Liver Physiol, 281, 1301–1308.

    Google Scholar 

  28. Gross, E., Abuladze, N., Pushkin, A., Kurtz, I. and Cotton, C.U. (2001): The stoichiometry of the electrogenic sodium bicarbonate cotransporter pNBC1 in mouse pancreatic duct cells is 2 HCO3 :1 Na+. J Physiol, 531, 375–382.

    Article  CAS  PubMed  Google Scholar 

  29. Gross, E., Hawkins, K., Pushkin, A., Sassani, P., Dukkipati, R., Abuladze, N., Hopfer, U. and Kurtz, I. (2001b): Phosphorylation of Ser(982) in the sodium bicarbonate cotransporter kNBC1 shifts the HCO3 :Na+ stoichiometry from 3:1 to 2:1 in murine proximal tubule cells. J Physiol, 537, 659–665.

    Article  CAS  PubMed  Google Scholar 

  30. Grotmol, T., Buanes, T., Brors, O. and Raeder, M.G. (1986): Lack of effect of amiloride, furosemide, bumetanide and triamterene on pancreatic NaHCO3 secretion in pigs. Acta Physiol Scand, 126, 593–600.

    Article  CAS  PubMed  Google Scholar 

  31. Grotmol, T., Buanes, T. and Raeder, M.G. (1986b): NN′-dicyclohexylcarbodiimide (DCCD) reduces pancreatic NaHCO3 secretion without changing pancreatic tissue ATP levels. Acta Physiol Scand, 128, 547–554.

    Article  CAS  PubMed  Google Scholar 

  32. Gutiérrez-Barrera, A.M., Menter, D.G., Abbruzzese, J.L. and Reddy, S.A. (2007): Establishment of three-dimensional cultures of human pancreatic duct epithelial cells. Biochem Biophys Res Commun, 358, 698–703.

    Article  PubMed  CAS  Google Scholar 

  33. Hansen, M.R., Krabbe, S. and Novak I. (2008): Purinergic receptors and calcium signalling in human pancreatic duct cell lines. Cell Physiol Biochem, 22, 157–168.

    Article  CAS  PubMed  Google Scholar 

  34. Hassan, H.A., Mentone, S., Karniski, L.P., Rajendran, V.M. and Aronson, P.S. (2007): Regulation of anion exchanger Slc26a6 by protein kinase C. Am J Physiol Cell Physiol, 292, 1485–1492.

    Article  CAS  Google Scholar 

  35. Hegyi, P. and Rakonczay, Z. Jr. (2007): The inhibitory pathways of pancreatic ductal bicarbonate secretion. Int J Biochem Cell Biol, 39, 25–30.

    Article  CAS  PubMed  Google Scholar 

  36. Hegyi, P., Rakonczay, Z. Jr., Tiszlavicz, L., Varró, A., Tóth, A., Rácz, G., Varga, G., Gray, M.A. and Argent, B.E. (2005): Protein kinase C mediates the inhibitory effect of substance P on HCO3 secretion from guinea pig pancreatic ducts. Am J Physiol Cell Physiol, 288, 1030–1041.

    Article  CAS  Google Scholar 

  37. Hegyi, P., Rakonczay, Z. Jr., Tiszlavicz, L., Varró, A., Tóth, A., Rácz, G., Varga, G., Gray, M.A. and Argent, B.E. (2006): SLC26 transporters and the inhibitory control of pancreatic ductal bicarbonate secretion. Novartis Found Symp, 273, 164–173.

    Article  CAS  PubMed  Google Scholar 

  38. Hollande, E., Salvador-Cartier, C., Alvarez, L. and Fanjul, M. (2005): Expression of a wild-type CFTR maintains the integrity of the biosynthetic/secretory pathway in human cystic fibrosis pancreatic duct cells. J Histochem Cytochem, 53, 1539–1552.

    Article  CAS  PubMed  Google Scholar 

  39. Hootman, S.R., Hobbs, E.C. and Luckie, D.B. (2005): Direct measurement of acid efflux from isolated guinea pig pancreatic ducts. Pancreas, 30, 363–368.

    Article  PubMed  Google Scholar 

  40. Hootman, S.R., Zukerman, J. and Kovalcik, S.A. (1993): Muscarinic receptors in isolated guinea pig pancreatic ducts. Biochem Pharmacol, 46, 291–296.

    Article  CAS  PubMed  Google Scholar 

  41. Ishiguro, H., Lindsay, A.R.G., Steward, M.C. and Case, R.M (1995): Secretin stimulation of Cl/HCO3 exchange in interlobular ducts isolated from guinea-pig pancreas. J Physiol, 482, 22P.

    Google Scholar 

  42. Ishiguro, H., Namkung, W., Yamamoto, A., Wang, Z., Worrell, R.T., Xu, J., Lee, M.G. and Soleimani, M. (2007): Effect of Slc26a6 deletion on apical Cl/HCO3 exchanger activity and cAMP-stimulated bicarbonate secretion in pancreatic duct. Am J Physiol Gastrointest Liver Physiol, 292, 447–455.

    Article  CAS  Google Scholar 

  43. Ishiguro, H., Naruse, S., Kitagawa, M., Hayakawa, T., Case, R.M. and Steward, M.C. (1999): Luminal ATP stimulates fluid and HCO3 secretion in guinea-pig pancreatic duct. J Physiol, 519, 551–558.

    Article  CAS  PubMed  Google Scholar 

  44. Ishiguro, H., Naruse, S., Kitagawa, M., Mabuchi, T., Kondo, T., Hayakawa, T., Case, R.M. and Steward, M.C. (2002b): Chloride transport in microperfused interlobular ducts isolated from guinea-pig pancreas. J Physiol, 539, 175–189.

    Article  CAS  PubMed  Google Scholar 

  45. Ishiguro, H., Naruse, S., Kitagawa, M., Suzuki, A., Yamamoto, A., Hayakawa, T., Case, R.M. and Steward, M.C. (2000): CO2 permeability and bicarbonate transport in microperfused interlobular ducts isolated from guinea-pig pancreas. J Physiol, 528, 305–315.

    Article  CAS  PubMed  Google Scholar 

  46. Ishiguro, H., Naruse, S., San Román, J.I., Case, M.C. and Steward, M.C. (2001): Pancreatic ductal bicarbonate secretion: past, present and future. J Pancreas, 2, 192–197.

    CAS  Google Scholar 

  47. Ishiguro, H., Naruse, S., Steward, M.C., Kitagawa, M., Ko, S.B., Hayakawa, T. and Case, R.M. (1998): Fluid secretion in interlobular ducts isolated from guinea-pig pancreas. J Physiol, 511, 407–422.

    Article  CAS  PubMed  Google Scholar 

  48. Ishiguro, H., Steward, M.C., Lindsay, A.R.G. and Case, R.M. (1996b): Accumulation of intracellular HCO3 by Na+−HCO3 cotransport in interlobular ducts from guinea-pig pancreas. J Physiol, 495, 169–178.

    CAS  PubMed  Google Scholar 

  49. Ishiguro, H., Steward, M. and Naruse, S. (2007b): Cystic fibrosis transmembrane conductance regulator and SLC26 transporters in HCO3 secretion by pancreatic duct cells. Sheng Li Xue Bao, 59, 465–476.

    CAS  PubMed  Google Scholar 

  50. Ishiguro, H., Steward, M.C., Sohma, Y., Kubota, T., Kitagawa, M., Kondo, T., Case, R.M., Hayakawa, T. and Naruse, S. (2002): Membrane potential and bicarbonate secretion in isolated interlobular ducts from guinea-pig pancreas. J Gen Physiol, 120, 617–628.

    Article  CAS  PubMed  Google Scholar 

  51. Ishiguro, H., Steward, M.C., Wilson, R.W. and Case, R.M. (1996): Bicarbonate secretion in interlobular ducts from guinea-pig pancreas. J Physiol, 495, 179–191.

    CAS  PubMed  Google Scholar 

  52. Jensen, S.L., Kühl, C., Nielsen, O.V. and Holst, J.J. (1976): Isolation and perfusion of the porcine pancreas. Scand J Gastroenterol, 37, 57–61.

    CAS  Google Scholar 

  53. Kapica, M., Zabielska, M., Puzio, I., Jankowska, A., Kato, I., Kuwahara, A. and Zabielski, R. (2007): Obestatin stimulates the secretion of pancreatic juice enzymes through a vagal pathway in anaesthetized rats. Preliminary results. J Physiol Pharmacol, 58, 123–130.

    PubMed  Google Scholar 

  54. Kim, M.H., Choi, B.H., Jung, S.R., Sernka, T.J., Kim, S., Kim, K.T., Hille, B., Nguyen, T.D. and Koh, D.S. (2008): Protease-activated receptor-2 increases exocytosis via multiple signal transduction pathways in pancreatic duct epithelial cells. J Biol Chem, 283, 18711–18720.

    Article  CAS  PubMed  Google Scholar 

  55. Ko, S.B., Shcheynikov, N., Choi, J.Y., Luo, X., Ishibashi, K., Thomas, P.J., Kim, J.Y., Kim, K.H., Lee, M.G., Naruse, S. and Muallem, S. (2002): A molecular mechanism for aberrant CFTR-dependent HCO3 transport in cystic fibrosis. EMBO J, 21, 5662–5672

    Article  CAS  PubMed  Google Scholar 

  56. Ko, S.B., Zeng, W., Dorwart, M.R., Luo, X., Kim, K.H., Millen, L., Naruse, S., Soyombo, A., Thomas, P.J. and Muallem, S. (2004): Gating of CFTR by the STAS domain of SLC26 transporters. Nature Cell Biol, 6, 343–350.

    Article  CAS  PubMed  Google Scholar 

  57. Kordás, K.S., Sperlágh, B., Tihanyi, T., Topa, L., Steward, M.C., Varga, G. and Kittel, A. (2004): ATP and ATPase secretion by exocrine pancreas in rat, guinea pig, and human. Pancreas, 29, 53–60.

    Article  PubMed  Google Scholar 

  58. Körner, M., Hayes, G.M., Rehmann, R., Zimmermann, A., Friess, H., Miller, L.J. and Reubi, J.C. (2005): Secretin receptors in normal and diseased human pancreas. Am J Pathol, 167, 959–968.

    Article  PubMed  Google Scholar 

  59. Kuijpers, G.A., Van Nooy, I.G., De Pont, J.J. and Bonting, S.L. (1984): The mechanism of fluid secretion in the rabbit pancreas studied by means of various inhibitors. Biochim Biophys Acta, 778, 324–331.

    Article  CAS  PubMed  Google Scholar 

  60. Kulaksiz, H. and Cetin, Y. (2002): The electrolyte/fluid secretion stimulatory peptides guanylin and uroguanylin and their common functional coupling proteins in the rat pancreas: a correlative study of expression and cell-specific localization. Pancreas, 25, 170–175.

    Article  PubMed  Google Scholar 

  61. Lee, M.G., Choi, J.Y., Luo, X., Strickland, E., Thomas, P.J. and Muallem, S. (1999): Cystic fibrosis transmembrane conductance regulator regulates luminal Cl/HCO3 exchange in mouse submandibular and pancreatic ducts. J Biol Chem, 274, 14670–14677.

    Article  CAS  PubMed  Google Scholar 

  62. Lightwood, R. and Reber, H.A. (1977): Micropuncture study of pancreatic secretion in the cat. Gastroenterology, 72, 61–66.

    CAS  PubMed  Google Scholar 

  63. Linsdell, P., Tabcharani, J.A., Rommens, J.M., Hou, Y.X., Chang, X.B., Tsui, L.C., Riordan, J.R. and Hanrahan, J.W. (1997): Multi-ion mechanism for ion permeation and block in the cystic fibrosis transmembrane conductance regulator chloride channel. J Gen Physiol, 110, 355–364.

    Article  CAS  PubMed  Google Scholar 

  64. Lohi, H., Kujala, M., Kerkela, E., Saarialho-Kere, U., Kestila, M. and Kere, J. (2000): Mapping of five new putative anion transporter genes in human and characterization of SLC26A6, a candidate gene for pancreatic anion exchanger. Genomics, 70, 102–112.

    Article  CAS  PubMed  Google Scholar 

  65. Love, J.A., Yi, E. and Smith, R.G. (2007): Autonomic pathways regulating pancreatic exocrine secretion. Auton Neurosci, 133, 19–34.

    Article  CAS  PubMed  Google Scholar 

  66. Madden, M.E. and Sarras, M.P. (1987): Distribution of Na+, K+-ATPase cytochemistry and [3H]-ouabain binding: a plasma membrane protein found primarily to be ductal cell associated. J Histochem Cytochem, 35, 1365–1374.

    Article  CAS  PubMed  Google Scholar 

  67. Mangos, J.A. and McSherry, N.R. (1971): Micropuncture study of excretion of water and electrolytes by the pancreas. Am J Physiol, 221, 496–503.

    CAS  PubMed  Google Scholar 

  68. Marino, C.R., Jeanes, V., Boron, W.F., Schmitt, B.M. (1999): Expression and distribution of the Na+−HCO3 cotransporter in human pancreas. Am J Physiol Gastrointest Liver Physiol, 277, 487–494.

    Google Scholar 

  69. Mount, D.B. and Romero, M.F. (2004): The SLC26 gene family of multifunctional anion exchangers. Pflügers Arch, 477, 710–721.

    Article  CAS  Google Scholar 

  70. Mussa, B.M. and Verberne, A.J. (2008): Activation of the dorsal vagal nucleus increases pancreatic exocrine secretion in the rat. Neurosci Lett, 433, 71–76.

    Article  CAS  PubMed  Google Scholar 

  71. Namkung, W., Lee, J.A., Ahn, W., Han, W., Kwon, S.W., Ahn, D.S., Kim, K.H. and Lee, M.G. (2003): Ca2+ activates cystic fibrosis transmembrane conductance regulator- and Cl dependent HCO3 transport in pancreatic duct cells. J Biol Chem, 278, 200–207.

    Article  CAS  PubMed  Google Scholar 

  72. Nathan, J.D. and Liddle, R.A. (2002): Neurohormonal control of pancreatic exocrine secretion. Curr Opinion Gastroenterol, 18, 536–544.

    Article  CAS  Google Scholar 

  73. Nawrot-Porabka, K., Jaworek, J., Leja-Szpak, A., Szklarczyk, J., Kot, M., Mitis-Musio, M., Konturek, S.J. and Pawlik, W.W. (2007): Involvement of vagal nerves in the pancreatostimulatory effects of luminal melatonin, or its precursor L-tryptophan. Study in the rats. J Physiol Pharmacol, 58, 81–95.

    PubMed  Google Scholar 

  74. Nguyen, T.D., Koh, D.S., Moody, M.W., Fox, N.R., Savard, C.E., Kuver, R., Hille, B. and Lee, S.P. (1997): Characterization of two distinct chloride channels in cultured dog pancreatic duct epithelial cells. Am J Physiol Gastrointest Liver Physiol, 272, 172–180.

    Google Scholar 

  75. Nguyen, T.D., Moody, M.W., Steinhoff, M., Okolo, C., Koh, D.S. and Bunnett, N.W. (1999): Trypsin activates pancreatic duct epithelial cell ion channels through proteinase-activated receptor-2. J Clin Invest, 103, 261–269.

    Article  CAS  PubMed  Google Scholar 

  76. Nishi, T. and Forgac, M. (2002): The vacuolar H+-ATPases: nature’s most versatile proton pumps. Nature Rev Mol Cell Biol, 3, 94–103.

    Article  CAS  Google Scholar 

  77. Novak I. (2008): Purinergic receptors in the endocrine and exocrine pancreas. Purinergic Signal, 4, 237–253.

    Article  CAS  PubMed  Google Scholar 

  78. Novak, I., Hede, S.E. and Hansen, M.R. (2008): Adenosine receptors in rat and human pancreatic ducts stimulate chloride transport. Pflügers Arch, 456, 437–447.

    Article  CAS  PubMed  Google Scholar 

  79. O’Reilly, C.M., Winpenny, J.P., Argent, B.E. and Gray, M.A. (2000): Cystic fibrosis transmembrane conductance regulator currents in guinea pig pancreatic duct cells: inhibition by bicarbonate ions. Gastroenterology, 118, 1187–1196.

    Article  PubMed  Google Scholar 

  80. Owyang, C. and Logsdon, C.D. (2004): New insights into neurohormonal regulation of pancreatic secretion. Gastroenterology, 127, 957–969.

    Article  CAS  PubMed  Google Scholar 

  81. Patel, R., Singh, J., Yago, M.D., Vílchez, J.R., Martínez-Victoria, E. and Mañas, M. (2004): Effect of insulin on exocrine pancreatic secretion in healthy and diabetic anaesthetised rats. Mol Cell Biochem, 261, 105–110.

    Article  CAS  PubMed  Google Scholar 

  82. Petersen, O.H. and Ueda, N. (1977): Secretion of fluid and amylase in the perfused rat pancreas. J Physiol, 264, 819–835.

    CAS  PubMed  Google Scholar 

  83. Poulsen, J.H., Fischer, H., Illek, B. and Machen, T.E. (1994): Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA, 91, 5340–5344.

    Article  CAS  PubMed  Google Scholar 

  84. Raeder, M.G. (1992): The origin of an subcellular mechanisms causing pancreatic bicarbonate secretion. Gastroenterology, 103, 1674–1684.

    CAS  PubMed  Google Scholar 

  85. Reddy, M.M. and Quinton, P.M. (2003): Control of dynamic CFTR selectivity by glutamate and ATP in epithelial cells. Nature, 423, 756–760.

    Article  CAS  PubMed  Google Scholar 

  86. Rodríguez-López, A.M. De Dios, I., García, L.J., López, M.A. and Calvo, J.J. (1995): Dose-response effects of VIP on the rabbit exocrine pancreatic secretion. Comparison with PACAP-27 actions. Rev esp Fisiol, 51, 29–36.

    PubMed  Google Scholar 

  87. Romero, M.F., Fulton, C.M. and Boron, W.F. (2004): The SLC4 family of HCO3 transporters. Pflügers Arch, 447, 495–509.

    Article  CAS  PubMed  Google Scholar 

  88. Schulz, I. (1981): Electrolyte and fluid secretion in the exocrine pancreas. In “Physiology of the Gastrointestinal Tract” (Johnson, L.R., ed.), Raven Press, New York, pp. 795–818.

    Google Scholar 

  89. Schulz, I., Yamagata, A. and Weske, M. (1969): Micropuncture studies on the pancreas of the rabbit. Pflügers Arch, 308, 277–290.

    Article  CAS  PubMed  Google Scholar 

  90. Sewell, W.A. and Young, J.A. (1975): Secretion of electrolytes by the pancreas of the anaestetized rat. J Physiol, 252, 379–396.

    CAS  PubMed  Google Scholar 

  91. Shcheynikov, N., Kim, K.H., Kim, K.M., Dorwart, M.R., Ko, S.B., Goto, H., Naruse, S., Thomas, P.J. and Muallem, S. (2004): Dynamic control of cystic fibrosis transmembrane conductance regulator Cl/HCO3 selectivity by external Cl. J Biol Chem, 279, 21857–21865.

    Article  CAS  PubMed  Google Scholar 

  92. Shetzline, M.A. and Liddle, R.A. (1996): Neurohumoral control of the exocrine pancreas. Curr Opinion Gastroenterol, 12, 423–428.

    Article  CAS  Google Scholar 

  93. Shumaker, H., Amlal, H., Frizzell, R., Ulrich, C.D. and Soleimani, M. (1999): CFTR drives Na+−nHCO3 cotransport in pancreatic duct cells: a basis for defective HCO3 secretion in CF. Am J Physiol Cell Physiol, 276, 16–25.

    Google Scholar 

  94. Shumaker, H. and Soleimani, M. (1999): CFTR upregulates the expression of the basolateral Na+−K+−2Cl cotransporter in cultured pancreatic duct cells. Am J Physiol Cell Physiol, 277, 1100–1110.

    Google Scholar 

  95. Sileikiene, V., Mosenthin, R., Bauer, E., Piepho, H.P., Tafaj, M., Kruszewska, D., Weström, B., Erlanson-Albertsson, C. and Pierzynowski, S.G. (2008): Effect of ileal infusion of short-chain fatty acids on pancreatic prandial secretion and gastrointestinal hormones in pigs. Pancreas, 37, 196–202.

    Article  CAS  PubMed  Google Scholar 

  96. Sileikiene, V., Mosenthin, R., Tafaj, M., Kruszewska, D., Weström, B., Mattsson, I. and Pierzynowski, S.G. (2005): Effect of short chain fatty acids infused intraileally on interdigestive exocrine pancreatic secretions in growing pigs. J Anim Physiol Anim Nutr, 89, 253–259.

    Article  CAS  Google Scholar 

  97. Smith, Z.D., Caplan, M.J., Forbush, B. and Jamieson, J.D. (1987): Monoclonal antibody localization of Na+−K+-ATPase in the exocrine pancreas and parotid of the dog. Am J Physiol, 253, 99–109.

    Google Scholar 

  98. Sohma, Y., Gray, M.A., Imai, Y. and Argent, B.E. (1996): A mathematical model of the pancreatic ductal epithelium. J Membr Biol, 154, 53–67.

    Article  CAS  PubMed  Google Scholar 

  99. Sohma, Y., Gray, M.A., Imai, Y. and Argent, B.E. (2001): 150 mM HCO3 : How does the pancreas do it? Clues from computer modelling of the duct cell. J Pancreas, 2, 198–202.

    CAS  Google Scholar 

  100. Soleimani, M. (2001): Impaired pancreatic ductal bicarbonate secretion in cystic fibrosis. J Pancreas, 2, 237–242.

    CAS  Google Scholar 

  101. Steward, M.C., Ishiguro, H. and Case, R.M. (2005): Mechanisms of bicarbonate secretion in the pancreatic duct. Annu Rev Physiol, 67, 377–409

    Article  CAS  PubMed  Google Scholar 

  102. Szalmay, G., Varga, G., Kajiyama, F., Yang, X.S., Lang, T.F., Case, R.M. and Steward, M.C. (2001): Bicarbonate and fluid secretion evoked by cholecystokinin, bombesin and acetylcholine in isolated guinea-pig pancreatic ducts. J Physiol, 535, 795–807.

    Article  CAS  PubMed  Google Scholar 

  103. Szucs, A., Demeter, I., Burghardt, B., Ovári, G., Case, R.M., Steward, M.C. and Varga, G. (2006): Vectorial bicarbonate transport by Capan-1 cells: a model for human pancreatic ductal secretion. Cell Physiol Biochem, 18, 253–264.

    Article  CAS  PubMed  Google Scholar 

  104. Takahashi, M., Naito, H., Sasaki, I., Funayama, Y., Shibata, C. and Matsuno, S. (2004): Long-term bile diversion enhances basal and duodenal oleate-stimulated pancreatic exocrine secretion in dogs. Tohoku J Exp Med, 203, 87–95.

    Article  CAS  PubMed  Google Scholar 

  105. Thévenod, F., Roussa, E., Schmitt, B.M. and Romero, M.F. (1999): Cloning and immunologicalization of a rat pancreatic Na+ bicarbonate cotransporter. Biochem Biophys Res Commun, 264, 291–298.

    Article  PubMed  Google Scholar 

  106. Vaysse, N., Bastic, M.J., Pascal, J.P., Martinel, C., Fourtainier, G. and Ribet, A. (1977): Effects of catecholamines and their inhibitors on the isolated canine pancreas. I. Noradrenaline and isoprenaline. Gastroenterology, 72, 711–718.

    CAS  PubMed  Google Scholar 

  107. Veel, T., Villanger, O., Holthe, M.R., Cragoe, E.J. and Raeder, M.G. (1992): Na+/H+ exchange is not important for pancreatic HCO3 secretion in the pig. Acta Physiol Scand, 144, 239–246

    Article  CAS  PubMed  Google Scholar 

  108. Venglovecz, V., Rakonczay, Z. Jr., Ozsvári, B., Takács, T., Lonovics, J., Varró, A., Gray, M.A., Argent, B.E. and Hegyi, P. (2008): Effects of bile acids on pancreatic ductal bicarbonate secretion in guinea pig. Gut, 57, 1102–1112.

    Article  CAS  PubMed  Google Scholar 

  109. Viard, E., Zheng, Z., Wan, S. and Travagli, R.A. (2007): Vagally mediated, nonparacrine effects of cholecystokinin-8s on rat pancreatic exocrine secretion. Am J Physiol Gastrointest Liver Physiol, 293, 493–500.

    Article  CAS  Google Scholar 

  110. Wang, B.J. and Cui, Z.J. (2007): How does cholecystokinin stimulate exocrine pancreatic secretion? From birds, rodents, to humans. Am J Physiol Regul Integr Comp Physiol, 292, 666–678

    Article  CAS  Google Scholar 

  111. Wang, I., Soyombo, A.A., Shcheynikov, N., Zeng, W., Dorwart, M., Marino, C.R., Thomas, P.J. and Muallem, S. (2006): Slc26a6 regulates CFTR activity in vivo to determine pancreatic duct HCO3 secretion: relevance to cystic fibrosis. EMBO J, 25, 5049–5057.

    Article  CAS  PubMed  Google Scholar 

  112. Winpenny, J.P., Harris, A., Hollingsworth, M.A., Argent, B.E. and Gray, M.A. (1998): Calcium-activated chloride conductance in a pancreatic adenocarcinoma cell line of ductal origin (HPAF) and in freshly isolated human pancreatic duct cells. Pflügers Arch, 435, 796–803.

    Article  CAS  PubMed  Google Scholar 

  113. Winpenny, J.P., Verdon, B., McAlroy, H.L., Colledge, W.H., Ratcliff, R., Evans, M.J., Gray, M.A. and Argent, B.E. (1995): Calcium-activated chloride conductance is not increased in pancreatic duct cells of CF mice. Pflügers Arch, 430, 26–33.

    Article  CAS  PubMed  Google Scholar 

  114. Yamamoto, M., Reeve, J.R. Jr., Keire, D.A. and Green, G.M. (2005): Water and enzyme secretion are tightly coupled in pancreatic secretion stimulated by food or CCK-58 but not by CCK-8. Am J Physiol Gastrointest Liver Physiol, 288, 866–879.

    Article  CAS  Google Scholar 

  115. Yegutkin, G.G., Samburski, S.S., Jalkanen, S. and Novak, I. (2006): ATP-consuming and ATP-generating enzymes secreted by the pancreas. J Biol Chem, 281, 29441–29447.

    Article  CAS  PubMed  Google Scholar 

  116. Zhao, H., Star, R.A. and Muallem, S. (1994): Membrane localization of H+ and HCO3 transporters in the rat pancreatic duct. J Gen Physiol, 104, 57–85.

    Article  CAS  PubMed  Google Scholar 

  117. Zhu, H., Zhu, J.X., Lo, P.S., Li, J., Leung, K.M., Rowlands, D.K., Tsang, L.L., Yu, M.K., Jiang, J.L., Lam, S.Y., Chung, Y.W., Zhou, Z., Sha, J. and Chang Cha, H. (2003): Rescue of defective pancreatic secretion in cystic-fibrosis cells by suppression of a novel isoform of phospholipase C. Lancet, 362, 2059–2065.

    Article  CAS  PubMed  Google Scholar 

  118. Zhu, J.X., Yang, N., Zhu, H., Chung, Y.W. and Chan, H.C. (2007): Effect of NYD-SP27 downregulation on ATP-induced Ca2+-dependent pancreatic duct anion secretion in cystic fibrosis cells. Cell Biol Int, 31, 521–525.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Calvo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, M., Hernández-Lorenzo, P., San Román, J.I. et al. Pancreatic duct secretion: experimental methods, ion transport mechanisms and regulation. J Physiol Biochem 64, 243–257 (2008). https://doi.org/10.1007/BF03178846

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178846

Key words

Palabras clave

Navigation