Skip to main content
Log in

Creatine feeding does not enhance intramyocellular glycogen concentration during carbohydrate loading: an in vivo study by31P-and13C-MRS

La suplementación de creatina no incrementa la concentración de glucógeno intramiocelular durante un período de ingesta elevada de hidratos de carbono

  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The main aim of this study was to examine the hypothesis that creatine (Cr) feeding enhances myocellular glycogen storage in humans undergoing carbohydrate loading. Twenty trained male subjects were randomly assigned to have their diets supplemented daily with 252 g of glucose polymer (GP) and either 21 g of Cr (CRGP, n=10) or placebo (PL-GP, n=10) for 5 days. Changes in resting myocellular glycogen and phosphocreatine (PCr) were determined with Magnetic Resonance Spectroscopy (13C- and31P-MRS, respectively). After CR-GP, the levels of intramyocellular glycogen increased from 147±13 (standard error) mmol·(kg wet weight)−1) to 182±17 mmol·(kg wet weight)−1, while it increased from 134±17 mmol·(kg wet weight) to 182±17 mmol·(kg wet weight)−1 after PL-GP; the increments in intramyocellular glycogen concentrations were not statistically different. The increment in the PCr/ATP ratio after CR-GP (+0.20±0.12) was significantly different compared to PL-GP (−0.34±0.16) (p<0.05). The present results do not support the hypothesis that Cr loading increases muscle glycogen storage.

Resumen

El principal objetivo de este estudio fue examinar la hipótesis que la suplementación con creatina (Cr) aumenta la concentración de glucógeno intramiocelular en humanos durante un periodo de ingesta elevada de hídratos de carbono. Veinte hombres entrenados fueron asignados de manera randomizada a dietas suplementadas diariamente con 252 g de polímeros de glucosa (GP) y bien 21 g de Cr (CR-GP, n=10) o placebo (PL-GP, n=10) durante 5 días. Los cambios en los níveles de glucógeno intramiocelular, y fosfocreatina (PCr) y ATP fueron determinados en reposo con Espectroscopía de Resonancia Magnética (13C-and31PMRS, respectivamente). Despues de CR-GP, Los níveles de glucógeno incrementaron desde 147±13 (error standard) mmol·(kg peso húmedo−1) a 172±13 mmol·(kg peso húmedo1), mientras incrementó desde 134±17 mmol·(kg peso húmedo−1) a 182±17 mmol·(kg peso húmedo−1) despues de PL-GP; los incrementos en la concentración de glucógeno intramiocelular en CR-GP y PL-GP no fueron estadisticamente diferentes. El incremento en el cociente PCr/ATP después de CR-GP (+0.20±0.12) fue estadisticamente diferente comparado con el cambio después de PL-GP (−0.34±0.16) (p<0.05). Los resultados no apoyan la hipótesis de que la creatina incrementa la concentración de glucógeno intramiocelular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balsom, P.D, Soderlund, K., Sjodin, B. and Ekblom, B. (1995): Skeletal muscle metabolism during short duration high-intensity exercise: influence of creatine supplementation. Acta Physiol Scand, 154, 303–310.

    Article  CAS  PubMed  Google Scholar 

  2. Bergstrom J, G. Guarnieri, E. Hultman. (1971): Carbohydrate metabolism and electrolyte changes in human muscle tissue during heavy work. J Appl Physiol, 30, 122–125.

    CAS  PubMed  Google Scholar 

  3. Bessman SP and Fonyo A. (1966): The possible role of the mitochondrial bound creatine kinase in regulation of mitochondrial respiration. Biochem Biophys Res Commun, 22, 597–602.

    Article  CAS  PubMed  Google Scholar 

  4. Derave W, Eijnde BO, Verbessem P, Ramaekers M, Van Leemputte M, Richter EA, and Hespel P. (2003): Combined creatine and protein supplementation in conjunction with resistance training promotes muscle GLUT-4 content and glucose tolerance in humans. J Appl Physiol, 94, 1910–1916.

    CAS  PubMed  Google Scholar 

  5. Fryer LG, Hajduch E, Rencurel F, Salt IP, Hundal HS, Hardie DG, and Carling D. (2000): Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase. Diabetes, 49, 1978–1985.

    Article  CAS  PubMed  Google Scholar 

  6. Greenhaff PL, Bodin K, Soderlund K, and Hultman E. (1994): Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am J Physiol, 266, E725–730.

    Google Scholar 

  7. Holmes BF, Kurth-Kraczek EJ, and Winder WW. (1999): Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J Appl Physiol, 87, 1990–1995.

    CAS  PubMed  Google Scholar 

  8. Jue T, Rothman DL, Tavitian BA, and Shulman R G. (1989): Natural-abundance 13C NMR study of glycogen repletion in human liver and muscle. P Natl Acad Sci USA, 86, 1439–1442.

    Article  CAS  Google Scholar 

  9. Kreis R, M. Kamber, M. Koster, J. Felblinger, j. Slotboom, H. Hoppeler, C. Boesch. (1999): Creatine supplementation — part II: in vivo magnetic resonance spectroscopy. Med Sci Sports Exer, 31, 1770–1777.

    Article  CAS  Google Scholar 

  10. Mendez J, and A. Keys. (1960): Density and composition of mamalian muscle. Metabolism, 9, 184–188.

    CAS  Google Scholar 

  11. Merrill GF, Kurth EJ, Hardie DG, and Winder WW. (1997): AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol, 273, E1107–1112.

    CAS  PubMed  Google Scholar 

  12. Nelson AG, Arnall DA, Kokkonen J, Day R, and Evans J. (2001): Muscle glycogen supercompensation is enhanced by prior creatine supplementation. Med Sci Sports Exer, 33, 1096–1100.

    CAS  Google Scholar 

  13. Newman JE, Hargreaves M, Garnham A, and Snow RJ. (2003): Effect of creatine ingestion on glucose tolerance and insulin sensitivity in men. Med Sci Sports Exer, 35, 69–74.

    Article  CAS  Google Scholar 

  14. Op ’t Eijnde B, Urso B, Richter EA, Greenhaff PL, and Hespel P. (2001): Effect of oral creatine supplementation on human muscle GLUT4 protein content after immobilization. Diabetes, 50, 18–23.

    Article  PubMed  Google Scholar 

  15. Ponticos M, Lu QL, Morgan JE, Hardie DG, Partridge TA, and Carling D. (1998): Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J, 17, 1688–1699.

    Article  CAS  PubMed  Google Scholar 

  16. Rico-Sanz J. (2000): Creatine reduces human muscle PCr and pH decrements and P(i) accumulation during low-intensity exercise. J Appl Physiol, 88, 1181–1191.

    Article  CAS  PubMed  Google Scholar 

  17. Rico-Sanz J and Mendez Marco MT. (2000): Creatine enhances oxygen uptake and performance during alternating intensity exercise. Med Sci Sports Exer, 32, 379–385.

    Article  CAS  Google Scholar 

  18. Robinson TM, Sewell DA, Hultman E, and Greenhaff PL. (1999): Role of submaximal exercise in promoting creatine and glycogen accumulation in human skeletal muscle. J Appl Physiol, 87, 598–604.

    CAS  PubMed  Google Scholar 

  19. Rooney K, Bryson J, Phuyal J, Denyer G, Caterson I, and Thompson C. (2002): Creatine supplementation alters insulin secretion and glucose homeostasis in vivo. Metabolism, 51, 518–522.

    Article  CAS  PubMed  Google Scholar 

  20. Rooney KB, Bryson JM, Digney AL, Rae CD, and Thompson CH. (2003): Creatine supplementation affects glucose homeostasis but not insulin secretion in humans. Ann Nutr Metab, 47, 11–15.

    Article  CAS  PubMed  Google Scholar 

  21. Saks VA, Rosenshtraukh LV, Smirnov VN, and Chazov EI. (1978): Role of creatine phosphokinase in cellular function and metabolism. Can J Physiol Pharmacol, 56, 691–706.

    CAS  PubMed  Google Scholar 

  22. Savabi F, Geiger PJ, and Bessman SP. (1984): Myofibrillar end of the creatine phosphate energy shuttle. Am J Physiol, 247, C424–432.

    CAS  PubMed  Google Scholar 

  23. Sewell DA, Robinson TM, and Greenhaff PL. (2008): Creatine supplementation does not affect human skeletal muscle glycogen content in the absence of prior exercise. J Appl Physiol, 104, 508–512.

    Article  CAS  PubMed  Google Scholar 

  24. Stacey RS. (1933): The effect on the blood-sugar and blood-phosphate of ingested creatine. Biochem J, 27, 690–692.

    CAS  PubMed  Google Scholar 

  25. Van Loon LJ, Murphy R, Oosterlaar AM, Cameron-Smith D, Hargreaves M, Wagenmakers AJ, and Snow R. (2004): Creatine supplementation increases glycogen storage but not GLUT-4 expression in human skeletal muscle. Clin Sci, 106, 99–106.

    Article  PubMed  Google Scholar 

  26. Wallimann T, Wyss M, Brdiczka D, Nicolay K, and Eppenberger HM. (1992): Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J, 281, 21–40.

    CAS  PubMed  Google Scholar 

  27. Winder WW. (2001): Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. J Appl Physiol, 91, 1017–1028.

    CAS  PubMed  Google Scholar 

  28. Winder WW and Hardie DG. (1999): AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol, 277, E1–10.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rico-Sanz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rico-Sanz, J., Zehnder, M., Buchli, R. et al. Creatine feeding does not enhance intramyocellular glycogen concentration during carbohydrate loading: an in vivo study by31P-and13C-MRS. J Physiol Biochem 64, 189–196 (2008). https://doi.org/10.1007/BF03178841

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178841

Key words

Palabras clave

Navigation