Advertisement

Abstracts of the EPSM-ABEC 2008 conference

Article
  • 1.4k Downloads

Keywords

Monte Carlo Intensity Modulate Radiation Therapy Normal Tissue Complication Probability Electronic Portal Image Device Radiochromic Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yang, Y., et al.,Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation. Physics in Medicine and Biology, 2007. 52(3): p. 685–705.PubMedCrossRefGoogle Scholar
  2. 2.
    Ding, G.X., et al.,A study on adaptive IMRT treatment planning using kV cone-beam CT. Radiotherapy and Oncology, 2007. 85(1): p. 116–125.PubMedCrossRefGoogle Scholar
  3. 3.
    van Zijtveld, M., M. Dirkx, and B. Heijmen,Correction of conebeam CT values using a planning CT for derivation of the “dose of the Day”. Radiotherapy and Oncology, 2007. 85(2): p. 195–200.PubMedCrossRefGoogle Scholar
  4. 4.
    Van Esch, A.,Testing of the analytical anisotropic algorithm for photon dose calculation. Medical Physics, 2006. 33(11): p. 4130–4147.PubMedCrossRefGoogle Scholar

References

  1. 1.
    Stevens, C. (2002)An Anatomically-based Computational Study of Cardiac Mechanics and Myocardial Infarction. PhD Thesis, The University of Auckland, New Zealand.Google Scholar
  2. 2.
    Young, A.A., Cowan, B.R., Thrupp, S.F., Hedley, W.J. and Dell’Italia, L.J. (2000) Left Ventricular Mass and Volume: Fast Calculation with Guide-Point Modeling on MR Images.Radiology, 216, 597–602.PubMedGoogle Scholar

References

  1. 1.
    Shorten, P. R., O’Callaghan, P., Davidson, J. B. and Soboleva, T. K. (2007). A mathematical model of fatigue in skeletal muscle force contraction. Journal of Muscle Research and Cell Motility, 28:293–313.PubMedCrossRefGoogle Scholar
  2. 2.
    Rohrle, O., Davidson, J. B. and Pullan, A. J. Bridging Scales: A three-dimensional electromechanical finite element model of skeletal muscle. Accepted for publication, SISC.Google Scholar
  3. 3.
    Lansdown, D. A., Zhaohua, D., Wadington, M., Hornberger, J. L. and Damon, B. M. (2007). Quantitative diffusion tensor MRI-based fiber tracking of human skeletal muscle. Journal of Applied Physiology, 103:673–681.PubMedCrossRefGoogle Scholar

References

  1. 1.
    J. H. K. Kim, J. B. Davidson, O. Röhrle, T. Soboleva and A. J. Pullan, Anatomically Based Lower Limb Nerve Model for Electrical Stimulation, BioMedical Engineering OnLine, 6 (2007), pp. 48–59.PubMedCrossRefGoogle Scholar
  2. 2.
    O. Röhrle, J. B. Davidson and A. J. Pullan, Briding Scales: A Three-Dimensional Electromechanical Finite Element Model of Skeletal Muscle, SIAM Journal on Scientific Computing (accepted for publication).Google Scholar
  3. 3.
    P. R. Shorten, P. O’Callaghan, J. B. Davidson and T. K. Soboleva, A mathematical model of fatigue in skeletal muscle force contraction, Journal of Muscle Research and Cell Motility, 28 (2007), pp. 293–313.PubMedCrossRefGoogle Scholar

References

  1. 1.
    B.M.C. McCurdy, K. Luchka and S. Pistorius, “Dosimetric investigation and portal dose image prediction using an amorphous silicon electronic portal imaging device,”Med. Phys. 28, 911–924 (2001).PubMedCrossRefGoogle Scholar
  2. 2.
    P. Vial, P.B. Greer, P. Hunt, L. Oliver and C. Baldock, “The impact of MLC transmitted radiation on EPID dosimetry for dynamic MLC beams,”Med. Phys. 35, 1267–1277 (2008).PubMedCrossRefGoogle Scholar
  3. 3.
    P.B. Greer, “Correction of pixel sensitivity variation and off-axis response for amorphous silicon EPID dosimetry,”Med. Phys. 32, 3558–3568 (2005).PubMedCrossRefGoogle Scholar

Reference

  1. 1.
    W. Swindell and P. M. Evans (1996). Med. Phys. 23(1): 63–73.PubMedCrossRefGoogle Scholar

References

  1. 1.
    Champion R, Kinsman LD, Lee GA, et al., Forecasting emergency department presentations. Aust Health Rev. 2007 Feb;31(1):83–90PubMedGoogle Scholar
  2. 2.
    Jones SS, Thomas A, Evans RS, et al., Forecasting daily patient volumes in the emergency department. Acad Emerg Med. 2008 Feb;15(2):159–70.PubMedCrossRefGoogle Scholar

References

  1. 1.
    Bates DO, Levick JR and Mortimer PS (1994), ‘Quantification of Rate and Depth of Pitting in Human Edema Using an Electronic Tonometer’, Lymphology 27, pp 159–172.PubMedGoogle Scholar

References

  1. 1.
    Patkin, M. (1970) “Measurement of tenderness with the description of a simple instrument,” Med J Aust, vol. 1, no. 13, pp. 670–672.PubMedGoogle Scholar
  2. 2.
    Shafer, N. (1967) “Technique for Quantitating Abdominal Pain,” JAMA, vol. 201, no.7, Aug, pp. 558–560.Google Scholar

References

  1. 1.
    I.J. Chetty, B. Curran, J.E. Cygler, J.J. DeMarco, G. Ezzel, B.A. Faddegon, I. Kawrakow, P.J. Keall, H. Liu, C.-M. Ma, D.W.O. Rogers, J. Seuntjens, D. Sheikh-Bagheri, and J.V. Siebers,Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electon external beam treatment planning, Med Phys 34, 4818–4853, 2007.PubMedCrossRefGoogle Scholar
  2. 2.
    S.B. Jiang, G.C. Sharp, T. Neicu, R.I. Berbeco, S. Flampouri, and T. Bortfield,On dose distribution comparison, Phys Med Biol 51, 759–776, 2006.PubMedCrossRefGoogle Scholar

References

  1. 1.
    Nath R, Anderson L L, et al. (1995). “Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine.” Med Phys 22(2): 209–34.PubMedCrossRefGoogle Scholar

Reference

  1. 1.
    D. Danoho. Compressed sensing, IEEE 52(4), 2006.Google Scholar
  2. 2.
    M. Lustig, etc.. Sparse MRI, MRM, 52(6) 2007.Google Scholar

References

  1. 1.
    D. C-S. Tai, B. Caldwell, I. J. LeGrice, D. Hooks, A. Pullan, and B. Smaill,Am. J. Physiol. 287, H985-H993 (2004).Google Scholar
  2. 2.
    R. L. Crawford,Bioremediation, Cambridge University Press, 1996.Google Scholar
  3. 3.
    C. Hall, M.V. Flores, T. Storm, K. Crosier, and P. Crosier,BMC Dev. Biol. 7, 42 (2007).PubMedCrossRefGoogle Scholar
  4. 4.
    D. C- S. Tai, D. A. Hooks, J. D. Harvey, B. H. Smaill, and C. Soeller,J. Biomed. Opt. 12, 3034033 (2007).CrossRefGoogle Scholar

Reference

  1. 1.
    van Battum et al., “Accurate dosimetry with Gafchromic EBT film of a 6 MV photon beam in water: What level is achievable?”, Med. Phys., v35, pp704–716, 2008.PubMedCrossRefGoogle Scholar

References

  1. 1.
    J.C.P. Heggie, J.K. Kay, W.K. Lee, (2006)Australasian Radiology, 50: 278–285.PubMedCrossRefGoogle Scholar
  2. 2.
    P.C. Shrimpton, M.C. Hillier, M.A. Lewis, M. Dunn. (2005) Report No.: NRPB-W67. National Radiological Protection Board, Didcot.Google Scholar

References

  1. 1.
    PTW: Diamond Detector. Available at: http://www.ptw.de/diamond_detector0.html?&L=0 [Accessed April 7, 2008].Google Scholar
  2. 2.
    Bergonzo P, Tromson D, Mer C. Radiation detection devices made from CVD diamond.Semiconductor Science and Technology. 2003;18:S105-S112.CrossRefGoogle Scholar
  3. 3.
    Bruzzi M, Bucciolini M, Lagomarsino S, et al. Deep Levels in CVD Diamond and Their Influence on the Electronic Properties of Diamond-Based Radiation Sensors.physica status solidi (a). 2002;193(3):563–571.CrossRefGoogle Scholar
  4. 4.
    Buttar CM, Conway J, Meyfarth R, et al. CVD diamond detectors as dosimeters for radiotherapy.Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1997;392(1–3):281–284.CrossRefGoogle Scholar
  5. 5.
    Cirrone G, Cuttone G, Lo Nigro S, et al. Dosimetric characterization of CVD diamonds in photon, electron and proton beams.Nuclear Physics B-Proceedings Supplements. 2006;150:330–333.CrossRefGoogle Scholar
  6. 6.
    Planskoy B. Evaluation of diamond radiation dosemeters.Physics in Medicine and Biology. 1980;25(3):519–532.PubMedCrossRefGoogle Scholar

References

  1. 1.
    Ciernik, I.F., et al., Radiother Oncol, 2002. 65(1): p. 39–45.PubMedCrossRefGoogle Scholar
  2. 2.
    Patel, R.R., et al., Radiother Oncol, 2003. 67(3): p. 285–94.PubMedCrossRefGoogle Scholar
  3. 3.
    van Lin, E.N., et al., Int J Radiat Oncol Biol Phys, 2007. 67(3): p. 799–811.PubMedGoogle Scholar

References

  1. 1.
    Kyriacou, P. A. (1999), ‘A system for investigating oesophageal photoplethysmographic signals in anaesthetised patients’,Medical and biological engineering and computing, vol. 37 pp.639–643.PubMedCrossRefGoogle Scholar

References

  1. 1.
    S.S Vedam, P.J. Keall, V.R. Kini, H. Mostafavi, H.P. Shukla, R. Mohan (2003).Acquiring a four-dimensional computed tomography dataset using an external respiratory signal, Phys Med Biol 48:45–62PubMedCrossRefGoogle Scholar

Reference

  1. 1.
    Slone RM, Heare MM, Vander Griend RA and Montgomery WJ (1991), ‘Orthopedic Fixation Devices’, RadioGraphics Vol 11, No 5, pp 823–847.PubMedGoogle Scholar

References

  1. 1.
    AS/ISO 17025, General requirements for the competence of testing and calibration laboratories (1999).Google Scholar
  2. 2.
    The BIPM Key Comparison Database: http://kcdb.bipm.org/Google Scholar

References

  1. 1.
    http://www-naweb.iaea.org/nahu/dmrp/tld.aspGoogle Scholar
  2. 2.
    http://rpc.mdanderson.org/rpc/Google Scholar

References

  1. 1.
    Roue A, Ferreira I, van Dam J et al The EQUAL-ESTRO audit on geometric reconstruction techniques in brachytherapyRadiother Oncol 78(1);78–83 2006.PubMedCrossRefGoogle Scholar
  2. 2.
    Roue A, Venselaar J, Ferreira I et al. Development of a TLD mailed system for remote dosimetry audit for 192 Ir HDR and PDR sources.Radiotherapy & Oncology. 83(1):86–93, 2007.CrossRefGoogle Scholar

References

  1. 1.
    Costa, K.D., Holmes, J.W., and McCulloch, A.D.: Phil Trans Royal Soc Lond, 359 (2001):1233–1250.Google Scholar
  2. 2.
    Le Bihan, D., Mangin, J.F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., Chabriat, H.:Journal of Magnetic Resonance Imaging 13 (2001) 534–546.PubMedCrossRefGoogle Scholar
  3. 3.
    Geerts, L., Bovendeerd, P., Nicolay, K., Arts, T.:American Journal of Physiology 283 (2002) H139-H145.PubMedGoogle Scholar
  4. 4.
    Omens, J.H., MacKenna, D. A. & McCulloch, A. D.:Journal of Biomechnics. 26 (1993), 665–676.CrossRefGoogle Scholar

References

  1. 1.
    Ikeda, D. (2004) Breast Imaging: the Requisites.Google Scholar
  2. 2.
    Malur, S., Wurdinger, S., Moritz, A., Michels, W. and Schneider, A. (2001). Comparison of written reports of mammography, sonography and magnetic resonance mammography for preoperative evaluation of breast lesions, with special emphasis on magnetic resonance mammography.Google Scholar
  3. 3.
    Rajagopal, V. (2007) Modelling Breast Tissue Mechanics Under Gravity Loading.Google Scholar
  4. 4.
    Rajagopal, V., Chung, J., Warren, R., Highnam, R., Nash, M., Nielsen, P. (2006) Finite element modelling of breast biomechanics: Predicting the effects of gravity.Google Scholar
  5. 5.
    CMISS. software program (2007), http://www.cmiss.orgGoogle Scholar

References

  1. 1.
    Orton, N., H. Jaradat, J. Welsh, and W. Tome,Total scalp irradiation using helical tomotherapy. Med Dosim, 2005. 30(3): p. 162–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Higgins, P.D., E.Y. Han, J.L. Yuan, S. Hui, and C.K. Lee,Evaluation of surface and superficial dose for head and neck treatments using conventional or intensity-modulated techniques. Phys Med Biol, 2007. 52(4): p. 1135–46.PubMedCrossRefGoogle Scholar
  3. 3.
    Ramsey, C.R., R.M. Seibert, B. Robison, and M. Mitchell,Helical tomotherapy superficial dose measurements. Med Phys, 2007. 34(8): p. 3286–93.PubMedCrossRefGoogle Scholar

References

  1. 1.
    Niemierko A. (1997)Med. Phys. 24: 103–110.PubMedCrossRefGoogle Scholar
  2. 2.
    Wu Q. et al. (2002)Int. J. Rad. Onc. Biol. Phys. 52: 224–235Google Scholar
  3. 3.
    Pollack A. et al. (2002)Int. J. Rad. Onc. Biol. Phys. 53: 1097–1105.CrossRefGoogle Scholar
  4. 4.
    Kallman P. et al. (1992)Int. J. Rad. Onc. Biol. Phys. 62:249–262.CrossRefGoogle Scholar
  5. 5.
    Emami B. et al. (1991)Int. J. Rad. Onc. Biol. Phys. 21: 109–122Google Scholar

References

  1. 1.
    Calibration of photon and beta ray sources used in brachytherapy, IAEA-TecDoc-1274, Vienna, 2002.Google Scholar
  2. 2.
    Douysset, G., Sander, T., Gouriou, J., Nutbrown, R., Comparison of air kerma standards of LNE-LNHB and NPL for192Ir brachytherapy sources: EUROMET project no 814, Med. Phys. Biol. 53 (2008) N85-N97.CrossRefGoogle Scholar
  3. 3.
    E. Mainegra-Hing and D. O. Rogers, On the accuracy of techniques for obtaining the calibration coefficient NK of192Ir HDR brachytherapy sources, Med. Phys. 33 (2006) 3340–3347.PubMedCrossRefGoogle Scholar

References

  1. 1.
    R. Nath, L. L. Anderson, G. Luxton, K. A. Weaver, J. F. Williamson, A. S. Meigooni, “Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43,” Med Phys 1995, vol 22 (2), Feb, pp 209–234.PubMedCrossRefGoogle Scholar

References

  1. 1.
    Madsen, M. T. et al: AAPM Task Group 108: PET and PET/CT Shielding Requirements, Med. Phys. 33 (1), January 2006Google Scholar
  2. 2.
    http://www.infomine.com/investment/historicalcharts/showcharts.asp?c=Lead Google Scholar

References

  1. 1.i
    Robot Corporation,iRobot® Scooba ® Floor Washing Robots, 2008,http://www.irobot.com/sp.cfm?pageid=128 accessed 8th May 2008.Google Scholar
  2. 2.
    Delacroix, D., Guerre, JP, Leblanc, P, Hickman, C,Radionuclide and Radiation Protection Data Handbook, Radiation Protection Dosimetry 98 (1) pg 108, 2002Google Scholar

References

  1. 1.
    NCRP Report 147.Structural shielding design for medical X-ray imaging facilities. National Council on Radiation Protection and Measurements. 2004.Google Scholar
  2. 2.
    BIR/IPEM.Radiation Shielding for Diagnostic X-rays: Report of a Joint BIR/IPEM Working Party. British Institute of Radiology, 2000.Google Scholar
  3. 3.
    AAPM Task Group 108:PET and PET/CT shielding requirements. Med. Phys 33(1):4–15. 2006.CrossRefGoogle Scholar
  4. 4.
    Dixon, RL et al.Radiation protection standards: their evolution from science to philosophy. Radiation Protection Dosimetry 155(1–4): 16–22.2005.CrossRefGoogle Scholar

References

  1. MammoSite ® Radiation Therapy System (Cytyc, Marlborough, MA). Google Scholar

References

  1. 1.
    J. Herzen et. al., Dosimetric evaluation of a 2D pixel ionization chamber for implementation in clinical routine, Phys. Med. Biol. 52 (2007) 1197–1208.PubMedCrossRefGoogle Scholar
  2. 2.
    N. Dogan et. al., Comparative evaluation of Kodak EDR2 and XV2 films for verification of intensity modulated radiation therapy, Phys. Med. Biol. 47 (2002) 4121–4130.PubMedCrossRefGoogle Scholar

References

  1. 1.
    D A Low et al Med Phys 25(5) 1998 pp 656–661PubMedCrossRefGoogle Scholar
  2. 2.
    W B Harms et al Med Phys 25(10) 1998 pp 1830–1836PubMedCrossRefGoogle Scholar
  3. 3.
    W D Renner Medical Dosimetry 32(3) 2007 pp 157–161PubMedCrossRefGoogle Scholar

References

  1. 1.
    T. Wong, P. Metcalfe, T. Kron, T. Emeleus, (1992) Aust Phys Eng Sci Med, 15(3):138–146.Google Scholar
  2. 2.
    T. Wong, W. Kan, M. Law, (1996) Aust Phys Eng Sci Med, 19(4):237–247.Google Scholar
  3. 3.
    B.H. Shahine, M.S.A.L. Al-Ghazi, E. El-Khatib, (1999) Med Phys, 26(3):350–355.CrossRefGoogle Scholar
  4. 4.
    W. Ding, P. Johnston, T. Wong, I. Bubb, (2004) Aust Phys Eng Sci Med, 27(2):39–48.CrossRefGoogle Scholar

References

  1. 1.
    Bland J M and Altman D G 1986 Statistical methods for assessing agreement between two methods of clinical measurementLancet 1 307–10.PubMedGoogle Scholar
  2. 2.
    Bland J M and Altman D G 1999 Measuring agreement in method comparison studiesStat Methods Med Res 8 135–60.PubMedCrossRefGoogle Scholar

References

  1. 1.
    B. Warkentin, S. Steciw, S. Rathee, and B. G. Fallone, “Dosimetric IMRT verification with a flat-panel EPID,” Med. Phys. 30, 3143–3155, 2003.PubMedCrossRefGoogle Scholar
  2. 2.
    Van Esch A, Bohsung J, Sorvari P, Tenhunen M, Paiusco M, Iori M, Engstrom P, Nystrom H, Huyskens DP. “Acceptance tests and quality control (QC) procedures for the clinical implementation of intensity modulated radiotherapy (IMRT) using inverse planning and sliding windows technique: experience from five radiotherapy departments.” Radiother. Oncol., 65(1): 53–70, 2002.PubMedCrossRefGoogle Scholar

References

  1. 1.
    S Best, A Ralston, D McKenzie and N Suchowerska. Effect of scatter material on detector performance for in vivo dosimetry. Physics in Medicine and Biology 53(2008) 89–97.PubMedCrossRefGoogle Scholar
  2. 2.
    S Best, A Ralston and N Suchowerska. Clinical application of the OneDose™ Patient Dosimetry System for total body irradiation. Physics in Medicine and Biology 50(2005) 5909–5919.PubMedCrossRefGoogle Scholar

References

  1. 1.
    Butson MJ, Cheung T, Yu P and Metcalfe P. (2000)Effects on skin dose from unwanted air gaps under bolus in photon beam radiotherapy Radiation Measurements 32(3):201–4CrossRefGoogle Scholar
  2. 2.
    Klein EK, Chin LM, Rice RK, Mijnheer BJ. (1993)The influence of air cavities on interface doses for photon beams Int. J. Radiation Oncology Biol. Phys. 27(2): 419–427Google Scholar
  3. 3.
    Ebert M and Spry N. (2001)Dose perturbation by air cavities in megavoltage photon beams: Implications for cavity surface doses. Australasian Radiology 34: 205–10CrossRefGoogle Scholar
  4. 4.
    Wong TP, Metcalfe PE, Kron T, Emeleus TG. (1992)Radiotherapy x-ray dose distribution beyond air cavities. Australas. Phys. Eng. Sci. Med., 15(3):138–46.PubMedGoogle Scholar

References

  1. 1.
    S. J. K. Baker, G. J. Budgell, and R. I. MacKay, “Use of an amorphous silicon electronic portal imaging device for multileaf collimator quality control and calibration,”Physics in Medicine and Biology, vol. 50, pp. 1377–1392, 2005.PubMedCrossRefGoogle Scholar
  2. 2.
    J. Change, C. Obcemea, J. Sillanpaa, J. Mechalakos, and C. Burman, “Use of EPID for leaf position accuracy QA of dynamic multi-leaf collimator (DMLC) treatment,”Medical Physics, vol. 31, pp. 2091–2096, 2003.CrossRefGoogle Scholar
  3. 3.
    A. Curtin-Savard and E. B. Podgorsak, “An Electronic Portal Imaging Device as a Physics Tool,”Medical Dosimetry, vol. 22, pp. 101–105, 1997.PubMedCrossRefGoogle Scholar

References

  1. 1.
    J Rubenet al “The Effect of Intensity-Modulated Radiotherapy On Radiation-Induced Secondary Malignancies”Int. J. Radiation Oncology Biol. Phys. 70:1530–1536, 2008Google Scholar
  2. 2.
    A Wroe, I Cornelius and A Rosenfeld, “The role of nonelastic reactions in absorbed dose distributions from therapeutic proton beams in different medium”Medical Physics, 32:37–41, 2005PubMedCrossRefGoogle Scholar

References

  1. 1.
    Neuenschwander, H., Mackie, T.R., Reckwerdt, P.J., 1995, Phys. Med. Biol., 40:543–574PubMedCrossRefGoogle Scholar
  2. 2.
    Popple, R.A., Weinberg, R., Antolak, J.A., Sung-Joon, Y., Pareek, P.N., Duan, J., Shen, S., Brezovich, I.A., 2006, Med. Phys. 33(6):1540–1551PubMedCrossRefGoogle Scholar
  3. 3.
    Ding, G.X., Duggan, D.M., Coffey, C.W., Shokrani, P., Cygler, J.E., 2006, Phys. Med. Phys. 51:2781–2799CrossRefGoogle Scholar
  4. 4.
    Pemler, P., Besserer, J., Schneider, U., Neuenschwander, H., 2006, Z. Med. Phys., 16:313–329PubMedGoogle Scholar

References

  1. 1.
    Hill R, Holloway L and Baldock C 2005 A dosimetric evaluation of water equivalent phantoms for kilovoltage x-ray beamsPhys Med Biol 50 N331–44.PubMedCrossRefGoogle Scholar
  2. 2.
    Healy BJ, Gibbs A, Murry RL, Prunster JE and Nitschke KN 2005 Output factor measurements for a kilovoltage X-ray therapy unitAustralas Phys Eng Sci Med 28 115–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Hill R, Brown S, Baldock C 2008 Evaluation of the water equivalence of solid phantoms using gamma ray transmission measurements.Radiat Meas in press.Google Scholar
  4. 4.
    P. Andreo, D.T. Burns, K. Hohlfield et al.,Absorbed Dose Determination in External Beam Radiotherapy, An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water, Technical Report Series No. 398. (International Atomic Energy Agency, Vienna, 2000).Google Scholar
  5. 5.
    Ma CM and Seuntjens JP 1999 Mass-energy absorption coefficient and backscatter factor ratios for kilovoltage x-ray beams. Phys Med Biol 44(1): 131–43.PubMedCrossRefGoogle Scholar

References

  1. 1.
    Storchi P, van Gasteren JJ. A table of phantom scatter factors of photon beams as a function of the quality index and field size.Phys Med Biol 1996 March;41(3):563–71.CrossRefGoogle Scholar
  2. 2.
    Dutriex A, Bjarngard BE, BRIDIER A, MIJNHEER B, Shaw JE, Svenssen H. Monitor Unit Calculation For High Energy Photon Beams. 1998. Report No.: ESTRO Booklet No. 3.Google Scholar
  3. 3.
    Rogers DW, Faddegon BA, Ding GX, Ma CM, We J, Mackie TR. BEAM: a Monte Carlo code to simulate radiotherapy treatment units.Med Phys 1995 May;22(5):503–24.CrossRefGoogle Scholar
  4. 4.
    Sheikh-Bagheri D, Rogers DW. Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code.Med Phys 2002;29(3):391–402.PubMedCrossRefGoogle Scholar
  5. 5.
    Ding GX. Using Monte Carlo simulations to commission photon beam output factors-a feasibility study.Phys Med Biol 2003;48(23):3865–74.PubMedCrossRefGoogle Scholar
  6. 6.
    Ding GX. An investigation of accelerator head scatter and output factor in air.Med Phys 2004;31(9):2527–33.PubMedCrossRefGoogle Scholar

References

  1. 1.
    E. Ungureanu and J. Cramb (2006) “Evaluation and Clinical Implementation of the Eclipse Electron Monte Carlo Dose Calculation Algorithm.” Australas. Phys. Eng. Sci Med., 29(4), 366.Google Scholar

References

  1. 1.
    Kehwar, T. S. and Huq, M. S.,The nth root percent depth dose method for calculating monitor units for irregularly shaped electron fields, Med. Phys. 35 (2008) 1214–1222.PubMedCrossRefGoogle Scholar
  2. 2.
    Chetty, I. J. et al.,Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning, Med. Phys. 34 (2007) 4818–4853.PubMedCrossRefGoogle Scholar
  3. 3.
    Rogers, D.W.O. et al.,BEAM: A Monte Carlo code to simulate radiotherapy treatment units, Med. Phys. 22 (1995) 503–524.PubMedCrossRefGoogle Scholar
  4. 4.
    Kenny, J., Aldrich, B. and Ebert, M.,Monte Carlo Modelling of a Varian 21EX Clinac 6 MeV Electron Beam with EGS4/Beamnrc,APESM 27 (2004)323.Google Scholar
  5. 5.
    Schreiber, E. C. and Faddegon, B. A.,Sensitivity of large-field electron beams to variations in a Monte Carlo accelerator model,Phys. Med. Biol. 50 (2005)769.PubMedCrossRefGoogle Scholar
  6. 6.
    Faddegon, B. A., Schreiber, E. and Ding, X.,Monte Carlo simulation of large electron fields,Phys. Med. Biol. 50 (2005)741.PubMedCrossRefGoogle Scholar
  7. 7.
    Faddegon, B. A., Perl, J. and Asai, M.,Monte Carlo simulation of large electron fields,Phys. Med. Biol. 53 (2008)1497.PubMedCrossRefGoogle Scholar
  8. 8.
    http://www.rocksclusters.org Google Scholar
  9. 9.
    http://www.cs.wisc.edu/condor/ Google Scholar

Reference

  1. 1.
    Cazzaniga, L.F., et al.,Interphysician variability in defining the planning target volume in the irradiation of prostate and seminal vesicles. Radiotherapy and Oncology, 47: p. 293–296, 1998.PubMedCrossRefGoogle Scholar

References

  1. 1.
    G. Lymperopoulou, P. Papagiannis, A. Angelopoulos et al., Med Phys 33 (12), 4583 (2006).PubMedCrossRefGoogle Scholar
  2. 2.
    E. Pantelis, P. Papagiannis, P. Karaiskos et al., Int J Radiat Oncol Biol Phys 61 (5), 1596 (2005).PubMedGoogle Scholar

Reference

  1. 1.
    Bortfeld, T. et al — “Methods of image reconstruction from projections applied to conformation radiotherapy”, Phys. Med. Biol. 35:1423–1434, 1990PubMedCrossRefGoogle Scholar
  2. 2.
    XiO Intensity Modulated Radiation Therapy (IMRT) — Technical Reference, XiO Reference LibraryGoogle Scholar

References

  1. 1.
    H. J. Mankin, S. H. Doppelt, T. R. Sullivan and W. W. Tomford (1982)Cancer 50:613–630.PubMedCrossRefGoogle Scholar
  2. 2.
    R. E. Day, S. Megson, D. Wood (2005)JBJS [Br] 87-B:1568–74.Google Scholar

References

  1. 1.
    J. Geleijns, M. Salvadó Artells, W.J.H. Veldkamp, M. López Tortosa, A. Calzado Cantera, (2006) Eur Radiol 16: 2334–2340.PubMedCrossRefGoogle Scholar
  2. 2.
    KD Hooper, (2002) Seminars in Ultrasound, CT, and MRI, Vol 23 (5): 423–427.CrossRefGoogle Scholar

References

  1. 1.
    D. Huang, et al., Science 254, 1178–1181 (1991).PubMedCrossRefGoogle Scholar
  2. 2.
    U. Sharma, et al., IEEE J. of STIQE, 11, 799–805 (2005).Google Scholar

References

  1. 5.
    Fox, R. A. 2001, ‘Proposal for a gamma-emitting stent for the prevention and treatment of restenosis of coronary arteries’,Australasian Physical & Engineering Sciences and in Medicine 24(3) pp 153–159.CrossRefGoogle Scholar
  2. 6.
    Burrage, J. W. and Fox, R. A. ‘Production of technetium-96 in a standard medical cyclotron’, presentation at EPSM 2006, Sep 17-21 2006, Noosa, Qld, Aust.Google Scholar
  3. 7.
    Bennett, R. G., Christian, J. D., Petti, D. A., Terry., W. K., and Grover., S. B. 1999, ‘A system of 99MTc production based on distributed electron accelerators and thermal separation’,Nuclear Technology 126 pp 102–121.Google Scholar

Copyright information

© Australasian College of Physical Scientists and Engineers in Medicine 2008

Personalised recommendations