Skip to main content
Log in

A gas-kinetic discontinuous Galerkin method for viscous flow equations

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This paper presents a Runge-Kutta discontinuous Galerkin (RKDG) method for viscous flow computation. The construction of the RKDG method is based on a gas-kinetic formulation, which not only couples the convective and dissipative terms together, but also includes both discontinuous and continuous representation in the flux evaluation at the cell interface through a simple hybrid gas distribution function. Due to the intrinsic connection between the gaskinetic BGK model and the Navier-Stokes equations, the Navier-Stokes flux is automatically obtained by the present method. Numerical examples for both one dimensional (1D) and two dimensional (2D) compressible viscous flows are presented to demonstrate the accuracy and shock capturing capability of the current RKDG method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, D. N., Brezzi, F., Cockbum, B. and Marini, L. D., 2002, “Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems,”SIAM J. Numer. Anal. Vol. 39, p. 1749.

    Article  MATH  Google Scholar 

  • Bassi, F. and Rebay, S., 1997, “A High-order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations,”J. Comput. Phys. pp. 131–267.

  • Baumann, C. E. and Oden, J. T., 1999, “A Discontinuoushp Finite Element Method for the Euler and Navier-Stokes Equations,”Int. J. Numer. Methods in Fluids. Vol. 31, p. 79.

    Article  MATH  MathSciNet  Google Scholar 

  • Bhatnagar, P. L., Gross, E. P. and Krook, M., 1954, “A Model for Collision Processes in gases I: Small Amplitude Rocesses in Charged and Neutral Onecomponent Systems,”Phys. Rev. Vol. 94, p. 511.

    Article  MATH  Google Scholar 

  • Chou, S. Y. and Baganoff, D., 1997, “Kinetic Flux-Vector Splitting for the Navier-Stokes Equations,”Comput. Phys. Vol. 130, p. 217.

    Article  MATH  Google Scholar 

  • Cockbum, B., Karniadakis, G. E. and Shu, C. W., 2000, “The Development of Discontinuous Galerkin Methods,” Discontinuous Galerkin Methods: Theory, Computation and Applications, Springer, Berlin.

    Google Scholar 

  • Cockbum, B. and Shu, C. W., 1989a, “TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Scalar Conservation Laws II: General framework,”Math. Comp. Vol 52, p. 411.

    Article  MathSciNet  Google Scholar 

  • Cockbum, B., Lin, S. Y. and Shu, C. W., 1989b, “TVB Runge-Kurta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws III: One Dimensional Systems,”J. Comput. Phys. Vol. 84, p. 90.

    Article  MathSciNet  Google Scholar 

  • Cockbum, B., Hou S. and Shu, C. W., 1990, “TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws IV: The Multidimensional Case,”Math. Comp. Vol. 54, p. 545.

    Article  MathSciNet  Google Scholar 

  • Cockburn, B. and Shu, C. W., 1998, “The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V: Multidimensional Systems,”J. Compta. Phys. Vol. 141, p. 199.

    Article  MATH  MathSciNet  Google Scholar 

  • Cockburn, B. and Shu, C. W., 1998, “The Local Discontinuous Galerkin Method for Time-Dependent Convection-diffusion Systems,”SIAM J. Numer. Anal. Vol. 35, p. 2440

    Article  MATH  MathSciNet  Google Scholar 

  • Cockburn, B. and Shu, C. W. 2001, “Runge-Kutta Discon-tinuous Galerkin Method for Convection-Dominated Problems,”J. Sci. Comput. Vol. 16, p. 173.

    Article  MATH  MathSciNet  Google Scholar 

  • Hakkinen, R. J., and Greber, L., Trilling, L. and Abarbanel, S. S., 1959, “The Interaction of an Oblique Shock Wave with a Laminar Boundary Layer,”NASA Memo. 2-18-59W, NASA.

  • Ohwada, T., 2002, “On the Construction of Kinetic Schemes,”J. Comput. Phys. Vol. 177, p. 156.

    Article  MATH  MathSciNet  Google Scholar 

  • Ohwada, T. and Fukata, S., “Simple Derivation of High-resolution Schemes for Compressible Flows by Kinetic Approach,”J. Comput. Phys. Vol. 211, p. 424.

  • Qiu, J. and Shu, C. W., 2004, “Hermite WENO Schemes and Their Application as Limiters for Runge-Kutta Discontinuous Galerkin Method: One Dimensional Case,”J. Comput. Phys. Vol. 193, p. 115.

    Article  MATH  MathSciNet  Google Scholar 

  • Shu, C. W. and Osher, S., 1989, “Efficient Implementation of Essential Non-oscillatory Shock Capturing-Schemes,”II. J. Comput. Phys. Vol. 83, p. 32.

    Article  MATH  MathSciNet  Google Scholar 

  • Tang, H. Z. and Warnecke, G., 2005, “A Runge-Kutta Discontinuous Galerkin Method for the Euler Equations,”Computers & Fluids, Vol. 34, p. 375.

    Article  MATH  MathSciNet  Google Scholar 

  • van Leer, B., 1977, “Towards the Ultimate Conservative Difference Scheme IV. A New Approach to Numerical Convection,”J. Comput. Phys. Vol. 23, p. 276.

    Article  Google Scholar 

  • van Leer, B. and Nomura, S., 2005 “Discontinuous Galerkin for Diffusion,”AIAA-2005-5108, 17th AIAA Computational Fluid Dynamics Conference.

  • Xu, K., 1998, “Gas-kinetic Schemes for Unsteady Compressible flow Simulations,”VKI for Fluid Dynamics Lecture Series 1998-03.

  • Xu, K., 2001, “A Gas-kinetic BGK Scheme for the Navier-Stokes Equations and Its Connection with Artificial Dissipation and Godunov Method,”J. Comput. Phys. Vol. 171, p. 289.

    Article  MATH  MathSciNet  Google Scholar 

  • Xu, K. and Jameson, A., 1995, “Gas-Kinetic Relaxation (BGK-type) Schemes for the Compressible Euler Equations,”AIAA-95-1736, 12th AIAA Computational Fluid Dynamics Conference.

  • Xu, K. and Li, Z. W., 2001, “Dissipative Mechanism in Godunov-type Schemes,”Int. J. Numer. Methods in Fluids, Vol. 37, p. 1.

    Article  MATH  Google Scholar 

  • Xu, K., Mao, M. L. and Tang, L., “A Multidimensional Gas-kinetic BGK Scheme for Hypersonic Viscous flow,”J. Comput. Phys. Vol. 203, p. 405.

  • Xu, K., 2004, “Discontinuous Galerkin BGK Method for Viscous flow Equations: One-Dimensional Systems,”SIAMJ. Sci. Comput. Vol. 23, p. 1941.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Xu, K. A gas-kinetic discontinuous Galerkin method for viscous flow equations. J Mech Sci Technol 21, 1344 (2007). https://doi.org/10.1007/BF03177419

Download citation

  • Received:

  • Revised:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF03177419

Keywords

Navigation