Skip to main content
Log in

Impact des formulations sur la résolution de problèmes additifs chez l’enfant de 6 a 10 ans

How the wording of problems works on solving additive problems in children from 6 to 10

  • Published:
European Journal of Psychology of Education Aims and scope Submit manuscript

Résumé

Nous avons conduit une expérience afin d’étudier l’impact des formulations des énoncés sur la résolution de problèmes arithmétiques additifs chez des enfants de 6 à 10 ans. Trois variables ont été contrôlées, toutes inter-sujets. Tous les problèmes suivaient le même patron sous-jacent — un état initial (Ei), deux transformations (T1 et T2), un état final (Ef) — mais l’inconnue était tantôt Ef (problèmes S1) tantôt Ei (S2). Les transformations étaient soit formulées en second (01) soit en premier (02). Enfin, la question se trouvait en position soit finale (Q1) soit initiale (Q2).

Cent quatre vingt douze sujets (64 six, huit et dix ans) ont été soumis chacun à huit problèmes de la même modalité. Les difficultés de calcul numérique étaient contrôlées de manière à les rendre approximativement «proportionnelles» à l’âge.

Les résultats obtenus à partir d’une analyse des scores puis des procédures mettent en évidence que: a) Les problèmes portant sur la recherche de l’état final (S1) sont facilement et précocement résolus alors qu’une nette progression se manifeste avec ceux S2. b) Le placement en tête des transformations (02) et de la question (Q2) entraîne un accroissement systématique et très significatif des scores. c) Les procédures utilisées pour la résolution sont, à 6 et 8 ans, très dépendantes des formulations.

Nous proposons une interprétation en termes de connaissances disponibles en M.L.T. et de limitations de la capacité de traitement en mémoire de travail.

Abstract

An experiment was carried out concerning arithmetical problem solving in children. Three between sujects variables were manipulated. All problems followed the same underlying pattern with an initial state (Ei), two additive transformations (T1 and T2), and a final state (Ef); yet the unknown state concerned either Ef (S1 problems) or Ei (S2 problems). The order of introducing the transformations was counterbalanced: either state first (O1 order) or transformations first (O2). Finally, the question was located either at the end of the problem (Q1) or at its beginning (Q2).

One hundred and ninety two subjects (64 six, eight, and ten year-olds) were submitted to 8 different problems of the same type. The difficulties of the numerical series were tentatively controlled on an atempt to render the computations roughly «proportional» to ages.

Quantitative and qualitative analysis were conducted. Results show that: a) Problems with final state unknown (S1) are solved more easily and early, whereas problems with initial state unknown (S2) are better solved as the children grow older. b) Introducing the transformations first (O2) and placing the question at the beginning of the problem-text (Q2) yields better performances c) The procedures used to solve the problems are clearly dependant on the wording of the problems.

An interpretation is proposed which takes in account both the knowledge available in L.T.M. and the limitations of working memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abdi, H. (1985) Introduction au traitement statistique des données expérimentales (2 vol.), Dijon: Laboratoire de Psychologie, ronéo.

    Google Scholar 

  • Ashcraft, M. H. (1982) The development of mental arithmetic: a chronometric approach. Developmental Psychology, 2, 213–236.

    Google Scholar 

  • Ashcraft, M. H., Battaglia, J. (1978) Cognitive arithmetic: evidence for retrieval and decision processes in mental addition, Journal of Experimental Psychology: Human Learning & Memory, 4, 527–538.

    Google Scholar 

  • Ashcraft, M. H., Fierman, B. A. (1982) Mental addition in third, fourth, and sixth graders. Journal of Experimental Child Psychology, 33, 216–234.

    Article  Google Scholar 

  • Baddeley, A. D., Hitch, G. (1974) Working memory; In Bower G. H. (Ed.), The psychology of learning and motivation; New-York: Academic Press.

    Google Scholar 

  • Bastien, C. (1984) Réorganisation et construction de schèmes dans la résolution de problèmes. Psychologie Française, 29 (3/4), 243–246.

    Google Scholar 

  • Brainerd, C. J. (1983) Young children’s mental arithmetic errors: a working memory analysis. Child Development, 55, 812–830.

    Article  Google Scholar 

  • Bransford, J. D., Johnson, M. K. (1972) Contextual prerequisites for understanding: some investigations on comprehension and recall. Journal of Verbal Learning and Verbal Behavior, 11, 717–726.

    Article  Google Scholar 

  • Caillot, M. (1984) La résolution de problèmes de physique: représentations et stratégies. Psychologie Française, 29 (3/4), 257–262.

    Google Scholar 

  • Carpenter, T. P., Hiebert, J., Moser, J. M. (1981) Problem structure and first grade children’s initial solution process for simple addition and subtraction problems. Journal for Research in Mathematical Education, 12, 27–39.

    Article  Google Scholar 

  • Carpenter, T. P., Moser, J. M. (1982) The development of addition and subtraction problem solving skills; In Carpenter T. P., Moser J. M., Romberg T. A. (Eds.); Addition and subtraction: a cognitive perspective; Hillsdale: Erlbaum.

    Google Scholar 

  • Case, R. (1982) General developmental influences on the acquisition of elementary concepts and algorithms in arithmetic; In Carpenter T. P., Moser J. M., Romberg T. A. (Eds.); Addition and substraction: a cognitive perspective; Hillsdale: Erlbaum.

    Google Scholar 

  • Case, R., Kurland, D. M., Goldberg, J. (1982) Operational efficiency and the growth of short-term memory span. Journal of Experimental Child Psychology, 33, 386–404.

    Article  Google Scholar 

  • Chi, M. T. H. (1978) Knowledge structures and memory development; n Siegler R. S., (Eds.): Children’s thinking: what develops?; Hillsdale: Erlbaum.

    Google Scholar 

  • Chi, M. T. H. (1985) Changing conception of sources of memory development. Human Development, 28, 50–56.

    Article  Google Scholar 

  • Clark, H. H. (1969) Linguistic processes in deductive reasoning. Psychological Review, 76, 387–404.

    Article  Google Scholar 

  • Conne, F. (1985) Calculs numériques et calculs relationnels dans la résolution de problèmes arithmétiques. Recherches en Didactique des Mathématiques, 5 (3), 269–332.

    Google Scholar 

  • Dempster, F. N. (1981) Memory span: sources of individual and developmental differences. Psychological Bulletin, 99, 63–100.

    Article  Google Scholar 

  • Dumont, B. (1982) L’influence du décor et du langage dans des épreuves de type «logique» portant apparemment sur l’implication, Educational Studies in mathematics, 13, 409–429.

    Article  Google Scholar 

  • Escarabajal, M. C. (1984) Compréhension et résolution de problèmes additifs. Psychologie Française, 29, (3/4), 247–252.

    Google Scholar 

  • Fayol, M. (1985) Le récit et sa construction: une approche de psychologie cognitive, Neuchâtel, Paris: Delachaux & Niestlé.

    Google Scholar 

  • Fayol, M. (1985) Nombre, numération et dénombrement: que sait-on de leur acquisiton? Revue Française de Pédagogie, n.o 70, 59–77.

    Google Scholar 

  • Frederiksen, N. (1984) Implications of cognitive theory for instruction in problem solving. Review of Educational Research, 54 (3), 363–487.

    Article  Google Scholar 

  • Gelman, R. (1983) Les bébés et le calcul. La Recherche, 14 (149), 1382–1389.

    Google Scholar 

  • Groen, G. J., Parkman, J. M. (1972) A chronometric analysis of simple addition. Psychological Review, 79, 329–343.

    Article  Google Scholar 

  • Hitch, G. J. (1978) The role of short-time working memory in mental arithmetic. Cognitive Psychology, 10, 302–323.

    Article  Google Scholar 

  • Hitch, G. J. (1980) Developing the concept of working memory; In Claxton G., (Ed.); Cognitive Psychology: new directions; London: Routledge & Keagan.

    Google Scholar 

  • Hitch, G. J., Halliday, M. S. (1983) Working memory in children. Philosophical Transactions of the Royal Society of London, 8, 325–340.

    Article  Google Scholar 

  • Hudson, T. (1983) Correspondances and numerical differences between disjoint sets. Child Development, 54, 84–90.

    Article  Google Scholar 

  • Hulme, C., Thomson N., Muir, C., Lawrence, A. (1984) Speech rate and the development of short-term memory. Journal of Experimental Child Psychology, 38, 241–253.

    Article  Google Scholar 

  • Kaye, D. B. (1985). The development of mathematical cognition. Poster presented at the Eighth biennal Meeting of the I.S.S.B.D., Tours, France, July 7.

    Google Scholar 

  • Kieras, D. E. (1980) Initial mention as a signal to thematic content in technical passages. Memory & Cognition, 8, 345–353.

    Article  Google Scholar 

  • Kintsch, W., Greeno, J. G. (1985) Understanding and solving word arithmetic problems, Psychological Review, 92, 109–129.

    Article  Google Scholar 

  • Kozminsky, E. (1977) Altering comprehension: the effect of biasing titles on text comprehension. Memory & Cognition, 5, 482–490.

    Article  Google Scholar 

  • Nesher, P. (1982) Levels of description in the analysis of addition and subtraction word problems; In Carpenter, T. P., Moser, J. M., Romberg, T. A. (Eds.); Addition and subtraction: a cognitive perspective; Hillsdale: Erlbaum.

    Google Scholar 

  • Pascual-Leone, J. (1970) A mathematical model for the transition rule in Piaget’s developmental stages. Acta Psychologica, 32, 301–345.

    Article  Google Scholar 

  • Richard, J. F. (1984) La construction de la répresentation du probléme, Psychologie Française, 29 (3/4), 226–230.

    Google Scholar 

  • Riley, M. S., Greeno, J. G., Keller, J. I. (1983) Development of children’s problem solving ability in arithmetic; In Ginsburg, P. (Ed.); The development of mathematical thinking; New York: Academic Press.

    Google Scholar 

  • Schwarz, M. N. K., Flammer, A. (1981) Text structure and title effects on comprehension and recall. Journal of Verbal Learning and Verbal Behavior, 20, 61–66.

    Article  Google Scholar 

  • Svenson, D. (1975) Analysis of time required by children for simple additions. Acta Psychologica, 39, 289–302.

    Article  Google Scholar 

  • Sweller, J., Mawer, R. F., Ward, M. R. (1983) Development of expertise in mathematical problem solving. Journal of Experimental Psychology: General, 112, 639–661.

    Article  Google Scholar 

  • Teubal, E., Nesher, P. (1983). Order of mention vs order of events as determining factors in additive word problems. Proceedings of the Seventh International Conference P. M. E. Weizman Institute of Science, Rehovot Israel.

    Google Scholar 

  • Vergnaud, G. (1982) A classification of cognitive tasks and operations of thought involved in addition and subtraction problems; In Carpenter, T. P., Moser, J. M., Romberg, T. A., (Eds.); Addition and subtraction: a cognitive perspective; Hillsdale: Erlbaum.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Cette recherche a pu être conduite grâce à une subvention de l’Etablissement Public Régional de Bourgogne (Contrat EPR 1982–1984) et à l’aide consécutive à la Recommandation par la Direction de la Recherche du Ministère de l’Education Nationale. Nous remercions C. Bastien et J. Brun pour eurs commentaires à propos d’une première version de cet article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fayol, M., Abdi, H. Impact des formulations sur la résolution de problèmes additifs chez l’enfant de 6 a 10 ans. Eur J Psychol Educ 1, 41–58 (1986). https://doi.org/10.1007/BF03177410

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03177410

Mots-clés

Navigation