Skip to main content
Log in

A new thermostable lipase byAneurinibacillus thermoaerophilus strain HZ: nutritional studies

  • Industrial Microbiology
  • Short Communication
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A thermophilicAneurinibacillus thermoaerophilus strain HZ producing a thermostable lipase was isolated from hot spring in Malaysia. Maximum lipase production byA. thermoaerophilus strain HZ was obtained at pH 7.5 when grown under shaking condition (150 rpm) at 60 °C for 48 h. In order to increase the lipase production, optimization of nutritional factors was studied. Maximum lipase production was obtained in the presence of peptone as the best nitrogen source. Among the various natural and synthetic triglycerides used, olive oil served as the best substrate for production of extracellular lipase. Additional carbon sources added in this study did not significantly increase the lipase production while metal ions, Mg2+, Na+, Ca2+ and K+ were found to enhance lipase production. In addition, lipase production was stimulated by Tween 85 as a surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Al-Saleh A.A., Zaharan A.S. (1999). Synthesis of extracellular lipase by a strain ofPseudomonas fluorescens isolated from raw camel milk. Food Microbiol., 16: 149–156.

    Article  CAS  Google Scholar 

  • Baharum S.N. (2005). Production, characterization and expression of an organic solvent tolerant lipase fromPseudomonas aeruginosa S5, Ph.D. Thesis, University Putra Malaysia, Serdang, Selangor.

    Google Scholar 

  • Demirjian D.C., Morís-Varas F., Cassidy C.S. (2001). Enzymes from extremophiles, Curr. Opin. Chem. Biol., 5: 144–151.

    Article  CAS  PubMed  Google Scholar 

  • Dominguez A., Pastrana L., Longo M.A., Rúa M.L., Sanroman A. (2005). Lipolytic enzyme production byThermus thermophilus HB27 in a stirred tank bioreactor. Biochem. Eng. J., 26: 95–99.

    Article  CAS  Google Scholar 

  • Dong H., Gao S., Han S., Cao S. (1999). Purification and characterization of aPseudomonas sp. lipase and its properties in nonaqueous media. Biotechnol. Appl. Biochem., 30: 251–256.

    CAS  PubMed  Google Scholar 

  • Eltaweel M.A., Rahman R.N.Z.A., Salleh A.B., Basri M. (2005). An organic solvent-stable lipase fromBacillus sp. strain 42. Ann. Microbiol., 55 (3): 187–192.

    CAS  Google Scholar 

  • Fadiloglu S., Erkmen O. (2002). Effect of carbon and nitrogen sources on lipase production byCandida rugosa. Turkish J. Eng. Env. Sci., 26: 249–254.

    CAS  Google Scholar 

  • Jaeger K.E., Reetz M.T. (1998). Microbial lipases form versatile tools for biotechnology. Trends Biotechnol., 16: 396–403.

    Article  CAS  PubMed  Google Scholar 

  • Kambourova M., Kirilova N., Mandeva R., Derekova A. (2003). Purification and properties of thermostable lipase from a thermophilicBacillus stearothermophilus MC 7. J. Mol. Catal. B-Enzym., 22: 307–313.

    Article  CAS  Google Scholar 

  • Kim K.R., Kwon D.Y., Yoon S.H., Kim W.Y., Kim K.H. (2005). Purification, refolding, and characterization of recombinantPseudomonas fluorescens lipase. Protein Expres. Purif., 39: 124–129.

    Article  CAS  Google Scholar 

  • Kumar S., Kikon K., Upadhyay A., Kanwar S.S., Gupta R. (2005). Production, purification, and characterization of lipase from thermophilic and alkaliphilicBacillus coagulans BTS-3. Protein Expres. Purif., 41: 38–44.

    Article  CAS  Google Scholar 

  • Kwon D.Y., Rhee J.S. (1986). A simple and rapid colorimetric method for determination of free fatty acid for lipase assay. J. Am. Oil Chem. Soc., 63 (1): 69–92.

    Article  Google Scholar 

  • Leow T.C. (2005). Thermostable lipase: molecular structures, characterization and structure elucidation. PhD. Thesis, University Putra Malaysia, Serdang, Selangor.

    Google Scholar 

  • Li H., Zhang X. (2005). Characterization of thermostable lipase from thermophilicGeobacillus sp. TW1. Protein Expres. Purif., 42: 153–159.

    Article  Google Scholar 

  • Lin S.F., Chiou C.M., Tsai Y.C. (1995). Effect of Triton X-100 on alkaline lipase production byPseudomonas pseudoalcaligenes F-111. Biotechnol. Lett., 17: 959–962.

    Article  CAS  Google Scholar 

  • Lopes M.F.S., Leitao A.L., Regalla M., Marques J.J.F., Carrondo M.J.T., Crespo M.T.B. (2002). Characterization of a highly thermostable extracellular lipase fromLactobacillus plantarum. Int. J. Food Microbiol., 76: 107–115.

    Article  CAS  Google Scholar 

  • Mates A., Sudakevitz D. (1973). Production of lipase byStaphylococcus aureus under various growth conditions. J. Appl. Bacteriol., 36: 219–226.

    CAS  PubMed  Google Scholar 

  • Omar I.C., Nishio N., Nagai S. (1987). Production of a thermostable lipase byHumicola lanuginosa grown on sorbitol-corn steep liquor medium. Agric. Biol. Chem., 51: 2145–2151.

    CAS  Google Scholar 

  • Pandey A., Benjamin S., Soccol C.R., Nigam P., Krieger N., Soccol V.T. (1999). The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem., 29: 119–131.

    CAS  PubMed  Google Scholar 

  • Peterbauer T., Mucha J., Mach L., Richter A. (2002). Chain elongation of raffinose in pea seeds. J. Biol. Chem., 277: 194–200.

    Article  CAS  PubMed  Google Scholar 

  • Rathi P., Saene R.K., Gupta R. (2001). A novel alkaline lipase formBurkholderia cepacia for detergent formulation. Process Biochem., 37: 187–192.

    Article  CAS  Google Scholar 

  • Saxena R.K., Gupta R., Ghosh P.K., Sheba Dvidson W., Bradoo S., Gulati R. (1999). Microbial lipases, potential biocatalysts for the future industry. Curr. Sci., 77: 101–115.

    CAS  Google Scholar 

  • Sharma R., Soni S.K., Vohra R.M., Gupta L.K., Gupta J.K. (2002). Purification and characterization of a thermostable alkaline lipase from a new thermophilicBacillus sp. RSJ-1. Process Biochem., 37: 1075–1084.

    Article  CAS  Google Scholar 

  • Wu H.S., Tsai M.J. (2004). Kinetics of tributrin hydrolysis by lipase. Enzyme Microb. Technol., 35: 48–493.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Noor Zaliha Raja Abd Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, R.N.Z.R.A., Masomian, M., Salleh, A.B. et al. A new thermostable lipase byAneurinibacillus thermoaerophilus strain HZ: nutritional studies. Ann. Microbiol. 59, 133–139 (2009). https://doi.org/10.1007/BF03175610

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175610

Key words

Navigation