Skip to main content
Log in

Characterisation of maltose metabolism in lean dough by lagging and non-lagging baker’s yeast strains

  • Food Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Baker’s yeast,Saccharomyces cerevisiae, is a key microorganism used in the baking industry. While the preferred substrate for baker’s yeast is generally glucose, the predominant carbohydrate in lean dough is maltose. Therefore, in order to improve the leavening properties of lean dough, it is essential to improve maltose metabolism by the yeast. The objective of this study was to gain better insight into the regulation of the yeast maltose-transporter, maltose permease, and the maltose-cleaving enzyme, maltase, by glucose in lagging and non-lagging strains of baker’s yeast. Gas evolution in a low sugar model liquid dough (LSMLD) medium was used to select five out of ten industrial baker’s yeast strains for further investigation on the basis of varying metabolic characteristics. In all four of the lagging strains tested, both maltose permease and maltase were inhibited by glucose to some extent. In the relative non-lagging strain, which demonstrated the highest performance in LSMLD, it was shown that maltase was not inhibited by glucose. Based on our findings, it indicated that in lean dough leavening, it is the maltase that plays the essential role in maltose metabolism, rather than the maltose permease. Therefore, we propose that the lack of glucose repression on maltase activity is the most critical criterion in the development of non-lagging strains of baker’s yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelov A.I., Karadjov G.I., Roshkova Z.G. (1996). Strains selection of baker’s yeast with improved technological properties. Food Res. Int., 29: 235–239.

    Article  CAS  Google Scholar 

  • Araújo C.A., Pacheco A., Almeida M.J., Martins I.S., Leão C., Sousa M.J. (2007). Sugar utilization patterns and respiro-fermentative metabolism in the baker’s yeastTorulaspora delbrueckii. Microbiology, 153: 898–904.

    Article  Google Scholar 

  • Bell P.J.L., Higgins V.J., Attfield P.V. (2001). Comparison of fermentative capacities of industrial baking and wild-type yeasts of the speciesSaccharomyces cerevisiae in different sugar media. Lett. Appl. Microbiol., 32: 224–229.

    Article  CAS  PubMed  Google Scholar 

  • Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Charron M.J., Dubin R.A., Michels C.A. (1986). Structural and functional analysis of theMAL1 locus ofSaccharomyces cerevisiae. Mol. Cell. Biol., 6: 3891–3899.

    CAS  PubMed  Google Scholar 

  • Gancedo J.M. (1998). Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev., 62: 334–361.

    CAS  PubMed  Google Scholar 

  • Gascón S., Lampen J.O. (1968). Purification of the internal invertase of yeast. J. Biol. Chem., 243: 1573–1577.

    PubMed  Google Scholar 

  • Han E.K., Cotty F., Sottas C., Jiang H., Michels C.A. (1995). Characterization ofAGT1 encoding a general alpha-glucoside transporter fromSaccharomyces. Mol. Microbiol., 17: 1093–1107.

    Article  CAS  PubMed  Google Scholar 

  • Hazell B.W., Attfield P.V. (1999). Enhancement of maltose utilization bySaccharomyces cerevisiae in medium containing fermentable hexoses. J. Ind. Microbiol. Biotech., 22: 627–632.

    Article  CAS  Google Scholar 

  • Higgins V.J., Braidwood M., Bell P., Bissinger P., Dawes I.W., Attfield P.V. (1999a). Genetic evidence that high noninduced maltase and maltose permease activities, governed byMALx3-encoded transcriptional regulators, determine efficiency of gas production by baker’s yeast in unsugared dough. Appl. Environ. Microbiol., 65: 680–685.

    CAS  PubMed  Google Scholar 

  • Higgins V.J., Braidwood M., Bissinger P., Dawes I.W., Attfield P.V. (1999b). Leu343Phe substitution in the Malx3 protein ofSaccharomyces cerevisiae increases the constitutivity and glucose insensitivity of MAL gene expression. Curr. Genet., 35: 491–498.

    Article  CAS  PubMed  Google Scholar 

  • Hino A., Mihara K., Nakashima K., Takano H. (1990). Trehalose levels and survival ratio of freeze-tolerant versus freezesensitive yeasts. Appl. Environ. Microbiol., 56: 1386–1391.

    CAS  PubMed  Google Scholar 

  • Hirasawa R., Yokoigawa K. (2001). Leavening ability of baker’s yeast exposed to hyperosmotic media. FEMS Microbiol. Lett., 194: 159–162.

    Article  CAS  PubMed  Google Scholar 

  • Hu Z., Yue Y., Jiang H., Zhang B., Sherwood P.W., Michels C.A. (2000). Analysis of the mechanism by which glucose inhibits maltose induction ofMAL gene expression inSaccharomyces. Genetics, 154: 121–132.

    CAS  PubMed  Google Scholar 

  • Jiang H., Medintz I., Zhang B., Michels C.A. (2000). Metabolic signals trigger glucose-induced inactivation of maltose permease inSaccharomyces. J. Bacteriol., 182: 547–654.

    Google Scholar 

  • Klein C.J.L., Olsson L., Rønnow B., Mikkelsen J.D., Nielsen J. (1996). Alleviation of glucose repression of maltose metabolism byMIG1 disruption inSaccharomyces cerevisiae. Appl. Environ. Microbiol., 62: 4441–4449.

    CAS  PubMed  Google Scholar 

  • Novak S., Zechner-Krpan V., Marić V. (2004). Regulation of maltose transport and metabolism inSaccharomyces cerevisiae. Food Tech. Biotechnol., 42: 213–218.

    CAS  Google Scholar 

  • Phaff H.J., Miller M.W., Mrak E.M. (1978). The Life Yeasts, 2nd edn., Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Rincón A.M., Codón A.C., Castrejón F., Benítez T. (2001). Improved properties of baker’s yeast mutants resistant to 2-deoxy-D-glucose. Appl. Environ. Microbiol., 67: 4279–4285.

    Article  PubMed  Google Scholar 

  • Rollini M., Casiraghi E., Pagani M.A., Manzoni M. (2007). Technological performances of commercial yeast strains (Saccharomyces cerevisiae) in different complex dough formulations. Eur. Food Res. Technol., 226: 19–24.

    Article  CAS  Google Scholar 

  • Serrano R. (1977). Energy requirements for maltose transport in yeast. Eur. J. Biochem., 80: 97–102.

    Article  CAS  PubMed  Google Scholar 

  • Tangney M., Fleming A.B., Jorgensen P.L., Priest F.G. (1998). Regulation of maltose metabolism in stationary phase cultures of an asporogenous mutant ofBacillus licheniformis. J. Appl. Microbiol., 84: 201–206.

    Article  CAS  Google Scholar 

  • Verstrepen K.J., Iserentant D., Malcorps P., Derdelinckx G., Dijck P.V., Winderickx J., Pretorius I.S., Thevelein J.M., Delvaux F.R. (2004). Glucose and sucrose: hazardous fast-food for industrial yeast? Trends Biotechnol., 22: 531–537.

    Article  CAS  PubMed  Google Scholar 

  • Wang X., Bali M., Medintz I., Michels C.A. (2002). Intracellular maltose is sufficient to inducedMAL gene expression inSaccharomyces cerevisiae. Eukaryot. Cell, 1: 696–703.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DongGuang Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, T., Xiao, D. & Gao, Q. Characterisation of maltose metabolism in lean dough by lagging and non-lagging baker’s yeast strains. Ann. Microbiol. 58, 655–660 (2008). https://doi.org/10.1007/BF03175571

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175571

Key words

Navigation