Advertisement

Annals of Microbiology

, 58:281 | Cite as

A Δzwf (glucose-6-phosphate dehydrogenase) mutant of the cyanobacteriumSynechocystis sp. PCC 6803 exhibits unimpaired dark viability

  • Haydar KarakayaEmail author
  • M. Taha Ay
  • Kubra Ozkul
  • Nicholas H. Mann
Physiology and Metabolism Original Articles

Abstract

Previous studies have shown that mutation of cyanobacterialzwf genes leads to markedly impaired dark viability, however, it is not entirely clear whether this phenotype is due to a polar effect on other genes in the transcriptional unit, in particularopcA. In the cyanobacteriumSynechocystis sp. PCC 6803 thezwf andopcA genes are widely separated in the genome and can be mutated without polar effects on each other. Thezwf gene ofSynechocystis sp. PCC 6803 was deleted and no glucose-6-phosphate dehydrogenase activity was detectable in the mutant. Growth of the mutant was similar to the wild-type in the light, but also viability was unimpaired in the dark. The result of this study indicates that previously reported reduced dark viability in cyanobacterialzwf mutants may actually have been a result of impairedopcA transcription.

Key words

Synechocystic zwf mutation glucose-6-phosphate dehydrogenase dark viability 

References

  1. Anderson L.E., Nehrlich S.C., Champigny M. (1978). Light modulation of enzyme activity. Activation of the light effect mediators by reduction and modulation of enzyme activity by thiol-disulphide exchange? Plant Physiol., 61: 601–605.CrossRefPubMedGoogle Scholar
  2. Argueta C., Summers M.L. (2005). Characterization of a model system for study ofNostoc punctiforme akinetes. Arch. Microbiol., 183: 338–346.CrossRefPubMedGoogle Scholar
  3. Broedel S.E.Jr, Wolf R.E. (1991). Growth-phase-dependent induction of 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase in the cyanobacteriumSynechococcus sp. PCC 7942. Gene, 109: 71–79.CrossRefPubMedGoogle Scholar
  4. Copeland L., Turner J.F. (1987). The regulation of glycolysis and the pentose phosphate pathway. In: Davies D.D., Eds., The Biochemistry of Plant, Vol. 11, Academic Press, San Diego, pp. 107–128.Google Scholar
  5. Cossar J.D., Rowell P., Stewart W.P. (1984). Thioredoxin as a modulator of glucose-6-phosphate dehydrogenase in a N2-fixing cyanobacterium. J. Gen. Microbiol., 130: 991–998.Google Scholar
  6. Cséke C., Balogh A., Farkas G.L. (1981). Redox modulation of glucose-6-phosphate dehydrogenase inAnacyctis nidulans and its uncoupling by phage infection. FEBS Lett., 126: 85–88.CrossRefPubMedGoogle Scholar
  7. Gleason F.K. (1994). Thioredoxins in cyanobacteria: Structure and redox regulation of enzyme activity. In: Bryant D.A., Ed., The Molecular Biology of Cyanobacteria, Kluwer, Dordrecht, pp. 1–25.Google Scholar
  8. Gleason F.K. (1996). Glucose-6-phosphate dehydrogenase from the cyanobacteriumAnabaena sp. PCC 7120 purification and kinetics of redox modulation. Arch. Biochem. Biophys., 334: 227–283.CrossRefGoogle Scholar
  9. Grossman A., McGowan R.E. (1975). Regulation of glucose-6-phosphate dehydrogenase in blue-green algae. Plant Physiol., 55: 658–662.CrossRefPubMedGoogle Scholar
  10. Hagen K.D., Meeks J.C. (2001). The unique cyanobacterial protein OpcA is an allosteric effector of glucose-6-phosphate dehydrogenase inNostoc punctiforme ATCC29133. J. Biol. Chem., 276: 11477–11486.CrossRefPubMedGoogle Scholar
  11. Kaneko T., Sato S., Katani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S., Kimura T., Hosouchi T., Matsuno A., Muraki A., Nakazaki N., Naruo K., Okumura S., Shimpo S., Takeuchi C., Wada T., Watanabe A., Yamada M., Yasuda M., Tabata S. (1996). Sequence analysis of the genome of the unicellular cyanobacteriumSynechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res., 3 (3): 109–136.CrossRefPubMedGoogle Scholar
  12. Kaneko T., Nakamura Y., Wolk C.P., Kuritz T., Sasamoto S., Watanabe A., Iriguchi M., Ishikawa A., Kawashima K., Kimura T., Kishida Y., Kohara M., Matsumoto M., Matsuno A., Muraki A., Nakazaki N., Shimpo S., Sugimoto M., Takasawa M., Yamada M., Yasuda M., Tabata S. (2001). Complete genomic sequence of the filamentous nitrogen-fixing cyanobacteriumAnabaena sp. strain PCC 7120. DNA Res., 8 (5): 205–213.CrossRefPubMedGoogle Scholar
  13. Knowles V.L., Plaxton W.C. (2003). From genome to enzyme: Analysis of key glycoliytic and oxidative pentose-phosphate pathway enzymes in the cyanobacteriumSynechocystis sp. PCC 6803. Plant Cell Physiol., 44 (7): 758–763.CrossRefPubMedGoogle Scholar
  14. Kufryk G.I., Sachet M., Schmetterer G., Varmaas W.F.J. (2002). Transformation of the cyanobacteriumSynechocystis sp. PCC 6803 as a tool for genetic mapping: optimization of efficiency. FEMS Microbiol. Lett., 206: 215–219.CrossRefPubMedGoogle Scholar
  15. Lubberding H.J., Bot P.V.M. (1984). The influence of temperature on glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase and regulation of these enzymes in a mesophilic and thermophilic cyanobacterium. Arch. Microbiol., 137: 115–120.CrossRefGoogle Scholar
  16. Min H., Golden S.S. (2000). A new circadian class 2 gene,opcA, whose product is important for reductant production at night inSynechococcus sp. PCC 7942. J. Bacteriol., 182: 6214–6222.CrossRefPubMedGoogle Scholar
  17. Nakamura Y., Kaneko T., Sato S., Mimuro M., Miyashita H., Tsuchiya T., Sasamoto S., Watanabe A., Kawashima K., Kishida Y., Kiyokawa C., Kohara M., Matsumoto M., Matsuno A., Nakazaki N., Shimpo S., Takeuchi C., Yamada M., Tabata S. (2003). Complete genome structure ofGloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res., 10 (4): 137–145.CrossRefPubMedGoogle Scholar
  18. Newman J., Karakaya H., Scanlan D.J., Mann N.H. (1995). A comparison of gene organisation in thezwf region of the genomes of cyanobacteriaSynechococcus sp. PCC 7942 andAnabaena sp. PCC 7120. FEMS Microbiol. Lett., 133: 187–193.CrossRefPubMedGoogle Scholar
  19. Palenik B., Ren Q., Dupont C.L., Myers G.S., Heidelberg J.F., Badger J.H., Madupu R., Nelson W.C., Brinkac L.M., Dodson R.J.A., Durkin S., Daugherty S.C., Sullivan S.A., Khouri H., Mohamoud Y., Halpin R., Paulsen I.T. (2006). Genome sequence ofSynechococcus PCC 9311: Insights into adaptation to a coastal environment. Proc. Natl. Acad. Sci. USA, 103: 13555–13559.CrossRefPubMedGoogle Scholar
  20. Prentki P., Krisch H.M. (1984).In vitro insertional mutagenesis with a selectable DNA fragment. Gene, 29: 303–313.CrossRefPubMedGoogle Scholar
  21. Rippka R. (1988). Isolation and purification of cyanobacteria. In: Parker L., Glazer A.N., Eds, Methods of Enzymology, vol. 167. Academic Press, San Diego, pp. 3–27.Google Scholar
  22. Rowell P., Darling A.J., Amla D.V., Stewart W.D.P. (1998). Thioredoxin and enzyme regulation. In: Roger L.J., Gallon J.R., Eds, Biochemistry of the Algae and Cyanobacteria, Clarendon Press, Oxford, pp. 201–216.Google Scholar
  23. Sambrook J., Fritsch E.F., Maniatis T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  24. Scanlan D.J., Newman J., Sebaihia M., Mann N.H., Carr N.G. (1992). Cloning and sequencing analysis of the glucose-6-phosphate dehydrogenase gene from the cyanobacteriumSynechococcus sp. PCC 7942. Plant Mol. Biol., 19: 887–880.CrossRefGoogle Scholar
  25. Scanlan D.J., Sundaram S., Newman J., Mann N.H., Carr N.G. (1995). Characterisation of azwf mutant ofSynechococcus sp. strain PCC 7942. J. Bacteriol., 177: 2550–2553.PubMedGoogle Scholar
  26. Schaeffer F., Stanier R.Y. (1978). Glucose-6-phosphate dehydrogenase ofAnabaena sp. kinetic and molecular properties. Arch. Microbiol., 116: 9–19.CrossRefPubMedGoogle Scholar
  27. Smith A.J. (1982). Modes of cyanobacterial carbon metabolism. In: Carr N.G., Whitton B.A., Eds, The Biology of Cyanobacteria, Blackwell Scientific Publications, Oxford, pp. 47–85.Google Scholar
  28. Stanier R.Y., Cohen-Bazire G. (1977). Phototrophic prokaryotes: The cyanobacteria. Ann. Rev. Microbiol., 31: 225–274.CrossRefGoogle Scholar
  29. Summers M.L., Meeks J.C., Chu S., Wolf R.E. (1995a). Nucleotide sequence of an operon inNostoc sp. strain ATCC29133 encoding four genes of the oxidative pentose phosphate cycle. Plant Physiol., 107: 267–268.CrossRefPubMedGoogle Scholar
  30. Summers M.L., Wallis J.G., Campbell E.L., Meeks J.C., (1995b). Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacteriumNostoc sp. strain ATCC 29133. J. Bacteriol., 177: 6184–6194.PubMedGoogle Scholar
  31. Summers M.L., Meeks J.C. (1996). Transcriptional regulation ofzwf encoding, glucose-6-phosphate dehydrogenase, from the cyanobacteriumNostoc punctiforme strain ATCC 29133. Mol. Microbiol., 22 (3): 473–480.CrossRefPubMedGoogle Scholar
  32. Sundaram S., Karakaya H., Scanlan D.J., Mann N.H. (1998). Multiple molecular forms of glucose-6-phosphate dehydrogenase in cyanobacteria and the role of OpcA in the assembly process. Microbiology, 144: 1549–1556.CrossRefPubMedGoogle Scholar
  33. Udvardy J., Juhasz A., Farkas G.L. (1983). Interactions between hysteretic regulation and redox modulation of glucose-6-phosphate dehydrogenase fromAnacystic nidulans. FEBS Lett., 152: 97–100.CrossRefPubMedGoogle Scholar
  34. Udvardy J., Borbely G., Juhasz A., Farkas G.L. (1984). Thioredoxins and the redox modulation of glucose-6-phosphate dehydrogenase inAnabaena sp. strain PCC 7120 vegetative cells and heterocysts. J. Bacteriol., 157: 681–683.PubMedGoogle Scholar
  35. Wenderoth I., Scheibe R., von Schaewen A. (1997). Identification of the cysteine residues involved in redox modification of plant plastidic glucose-6-phosphate dehydrogenase. J. Biol. Chem., 272: 26985–96990.CrossRefPubMedGoogle Scholar

Copyright information

© University of Milan and Springer 2008

Authors and Affiliations

  • Haydar Karakaya
    • 1
    Email author
  • M. Taha Ay
    • 1
  • Kubra Ozkul
    • 1
  • Nicholas H. Mann
    • 2
  1. 1.Department of Biology, Faculty of Science and ArtUniversity of Ondokuz MayisSamsunTurkey
  2. 2.Department of Biological SciencesUniversity of WarwickCoventryUK

Personalised recommendations