Skip to main content
Log in

A Δzwf (glucose-6-phosphate dehydrogenase) mutant of the cyanobacteriumSynechocystis sp. PCC 6803 exhibits unimpaired dark viability

  • Physiology and Metabolism
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Previous studies have shown that mutation of cyanobacterialzwf genes leads to markedly impaired dark viability, however, it is not entirely clear whether this phenotype is due to a polar effect on other genes in the transcriptional unit, in particularopcA. In the cyanobacteriumSynechocystis sp. PCC 6803 thezwf andopcA genes are widely separated in the genome and can be mutated without polar effects on each other. Thezwf gene ofSynechocystis sp. PCC 6803 was deleted and no glucose-6-phosphate dehydrogenase activity was detectable in the mutant. Growth of the mutant was similar to the wild-type in the light, but also viability was unimpaired in the dark. The result of this study indicates that previously reported reduced dark viability in cyanobacterialzwf mutants may actually have been a result of impairedopcA transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson L.E., Nehrlich S.C., Champigny M. (1978). Light modulation of enzyme activity. Activation of the light effect mediators by reduction and modulation of enzyme activity by thiol-disulphide exchange? Plant Physiol., 61: 601–605.

    Article  CAS  PubMed  Google Scholar 

  • Argueta C., Summers M.L. (2005). Characterization of a model system for study ofNostoc punctiforme akinetes. Arch. Microbiol., 183: 338–346.

    Article  CAS  PubMed  Google Scholar 

  • Broedel S.E.Jr, Wolf R.E. (1991). Growth-phase-dependent induction of 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase in the cyanobacteriumSynechococcus sp. PCC 7942. Gene, 109: 71–79.

    Article  CAS  PubMed  Google Scholar 

  • Copeland L., Turner J.F. (1987). The regulation of glycolysis and the pentose phosphate pathway. In: Davies D.D., Eds., The Biochemistry of Plant, Vol. 11, Academic Press, San Diego, pp. 107–128.

    Google Scholar 

  • Cossar J.D., Rowell P., Stewart W.P. (1984). Thioredoxin as a modulator of glucose-6-phosphate dehydrogenase in a N2-fixing cyanobacterium. J. Gen. Microbiol., 130: 991–998.

    CAS  Google Scholar 

  • Cséke C., Balogh A., Farkas G.L. (1981). Redox modulation of glucose-6-phosphate dehydrogenase inAnacyctis nidulans and its uncoupling by phage infection. FEBS Lett., 126: 85–88.

    Article  PubMed  Google Scholar 

  • Gleason F.K. (1994). Thioredoxins in cyanobacteria: Structure and redox regulation of enzyme activity. In: Bryant D.A., Ed., The Molecular Biology of Cyanobacteria, Kluwer, Dordrecht, pp. 1–25.

    Google Scholar 

  • Gleason F.K. (1996). Glucose-6-phosphate dehydrogenase from the cyanobacteriumAnabaena sp. PCC 7120 purification and kinetics of redox modulation. Arch. Biochem. Biophys., 334: 227–283.

    Article  Google Scholar 

  • Grossman A., McGowan R.E. (1975). Regulation of glucose-6-phosphate dehydrogenase in blue-green algae. Plant Physiol., 55: 658–662.

    Article  CAS  PubMed  Google Scholar 

  • Hagen K.D., Meeks J.C. (2001). The unique cyanobacterial protein OpcA is an allosteric effector of glucose-6-phosphate dehydrogenase inNostoc punctiforme ATCC29133. J. Biol. Chem., 276: 11477–11486.

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T., Sato S., Katani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S., Kimura T., Hosouchi T., Matsuno A., Muraki A., Nakazaki N., Naruo K., Okumura S., Shimpo S., Takeuchi C., Wada T., Watanabe A., Yamada M., Yasuda M., Tabata S. (1996). Sequence analysis of the genome of the unicellular cyanobacteriumSynechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res., 3 (3): 109–136.

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T., Nakamura Y., Wolk C.P., Kuritz T., Sasamoto S., Watanabe A., Iriguchi M., Ishikawa A., Kawashima K., Kimura T., Kishida Y., Kohara M., Matsumoto M., Matsuno A., Muraki A., Nakazaki N., Shimpo S., Sugimoto M., Takasawa M., Yamada M., Yasuda M., Tabata S. (2001). Complete genomic sequence of the filamentous nitrogen-fixing cyanobacteriumAnabaena sp. strain PCC 7120. DNA Res., 8 (5): 205–213.

    Article  CAS  PubMed  Google Scholar 

  • Knowles V.L., Plaxton W.C. (2003). From genome to enzyme: Analysis of key glycoliytic and oxidative pentose-phosphate pathway enzymes in the cyanobacteriumSynechocystis sp. PCC 6803. Plant Cell Physiol., 44 (7): 758–763.

    Article  CAS  PubMed  Google Scholar 

  • Kufryk G.I., Sachet M., Schmetterer G., Varmaas W.F.J. (2002). Transformation of the cyanobacteriumSynechocystis sp. PCC 6803 as a tool for genetic mapping: optimization of efficiency. FEMS Microbiol. Lett., 206: 215–219.

    Article  CAS  PubMed  Google Scholar 

  • Lubberding H.J., Bot P.V.M. (1984). The influence of temperature on glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase and regulation of these enzymes in a mesophilic and thermophilic cyanobacterium. Arch. Microbiol., 137: 115–120.

    Article  CAS  Google Scholar 

  • Min H., Golden S.S. (2000). A new circadian class 2 gene,opcA, whose product is important for reductant production at night inSynechococcus sp. PCC 7942. J. Bacteriol., 182: 6214–6222.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y., Kaneko T., Sato S., Mimuro M., Miyashita H., Tsuchiya T., Sasamoto S., Watanabe A., Kawashima K., Kishida Y., Kiyokawa C., Kohara M., Matsumoto M., Matsuno A., Nakazaki N., Shimpo S., Takeuchi C., Yamada M., Tabata S. (2003). Complete genome structure ofGloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res., 10 (4): 137–145.

    Article  CAS  PubMed  Google Scholar 

  • Newman J., Karakaya H., Scanlan D.J., Mann N.H. (1995). A comparison of gene organisation in thezwf region of the genomes of cyanobacteriaSynechococcus sp. PCC 7942 andAnabaena sp. PCC 7120. FEMS Microbiol. Lett., 133: 187–193.

    Article  CAS  PubMed  Google Scholar 

  • Palenik B., Ren Q., Dupont C.L., Myers G.S., Heidelberg J.F., Badger J.H., Madupu R., Nelson W.C., Brinkac L.M., Dodson R.J.A., Durkin S., Daugherty S.C., Sullivan S.A., Khouri H., Mohamoud Y., Halpin R., Paulsen I.T. (2006). Genome sequence ofSynechococcus PCC 9311: Insights into adaptation to a coastal environment. Proc. Natl. Acad. Sci. USA, 103: 13555–13559.

    Article  CAS  PubMed  Google Scholar 

  • Prentki P., Krisch H.M. (1984).In vitro insertional mutagenesis with a selectable DNA fragment. Gene, 29: 303–313.

    Article  CAS  PubMed  Google Scholar 

  • Rippka R. (1988). Isolation and purification of cyanobacteria. In: Parker L., Glazer A.N., Eds, Methods of Enzymology, vol. 167. Academic Press, San Diego, pp. 3–27.

    Google Scholar 

  • Rowell P., Darling A.J., Amla D.V., Stewart W.D.P. (1998). Thioredoxin and enzyme regulation. In: Roger L.J., Gallon J.R., Eds, Biochemistry of the Algae and Cyanobacteria, Clarendon Press, Oxford, pp. 201–216.

    Google Scholar 

  • Sambrook J., Fritsch E.F., Maniatis T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Scanlan D.J., Newman J., Sebaihia M., Mann N.H., Carr N.G. (1992). Cloning and sequencing analysis of the glucose-6-phosphate dehydrogenase gene from the cyanobacteriumSynechococcus sp. PCC 7942. Plant Mol. Biol., 19: 887–880.

    Article  Google Scholar 

  • Scanlan D.J., Sundaram S., Newman J., Mann N.H., Carr N.G. (1995). Characterisation of azwf mutant ofSynechococcus sp. strain PCC 7942. J. Bacteriol., 177: 2550–2553.

    CAS  PubMed  Google Scholar 

  • Schaeffer F., Stanier R.Y. (1978). Glucose-6-phosphate dehydrogenase ofAnabaena sp. kinetic and molecular properties. Arch. Microbiol., 116: 9–19.

    Article  CAS  PubMed  Google Scholar 

  • Smith A.J. (1982). Modes of cyanobacterial carbon metabolism. In: Carr N.G., Whitton B.A., Eds, The Biology of Cyanobacteria, Blackwell Scientific Publications, Oxford, pp. 47–85.

    Google Scholar 

  • Stanier R.Y., Cohen-Bazire G. (1977). Phototrophic prokaryotes: The cyanobacteria. Ann. Rev. Microbiol., 31: 225–274.

    Article  CAS  Google Scholar 

  • Summers M.L., Meeks J.C., Chu S., Wolf R.E. (1995a). Nucleotide sequence of an operon inNostoc sp. strain ATCC29133 encoding four genes of the oxidative pentose phosphate cycle. Plant Physiol., 107: 267–268.

    Article  CAS  PubMed  Google Scholar 

  • Summers M.L., Wallis J.G., Campbell E.L., Meeks J.C., (1995b). Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacteriumNostoc sp. strain ATCC 29133. J. Bacteriol., 177: 6184–6194.

    CAS  PubMed  Google Scholar 

  • Summers M.L., Meeks J.C. (1996). Transcriptional regulation ofzwf encoding, glucose-6-phosphate dehydrogenase, from the cyanobacteriumNostoc punctiforme strain ATCC 29133. Mol. Microbiol., 22 (3): 473–480.

    Article  CAS  PubMed  Google Scholar 

  • Sundaram S., Karakaya H., Scanlan D.J., Mann N.H. (1998). Multiple molecular forms of glucose-6-phosphate dehydrogenase in cyanobacteria and the role of OpcA in the assembly process. Microbiology, 144: 1549–1556.

    Article  CAS  PubMed  Google Scholar 

  • Udvardy J., Juhasz A., Farkas G.L. (1983). Interactions between hysteretic regulation and redox modulation of glucose-6-phosphate dehydrogenase fromAnacystic nidulans. FEBS Lett., 152: 97–100.

    Article  CAS  PubMed  Google Scholar 

  • Udvardy J., Borbely G., Juhasz A., Farkas G.L. (1984). Thioredoxins and the redox modulation of glucose-6-phosphate dehydrogenase inAnabaena sp. strain PCC 7120 vegetative cells and heterocysts. J. Bacteriol., 157: 681–683.

    CAS  PubMed  Google Scholar 

  • Wenderoth I., Scheibe R., von Schaewen A. (1997). Identification of the cysteine residues involved in redox modification of plant plastidic glucose-6-phosphate dehydrogenase. J. Biol. Chem., 272: 26985–96990.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haydar Karakaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karakaya, H., Taha Ay, M., Ozkul, K. et al. A Δzwf (glucose-6-phosphate dehydrogenase) mutant of the cyanobacteriumSynechocystis sp. PCC 6803 exhibits unimpaired dark viability. Ann. Microbiol. 58, 281–286 (2008). https://doi.org/10.1007/BF03175330

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175330

Key words

Navigation