Skip to main content
Log in

Accumulation of selenium and catalase activity changes in the cells ofSaccharomyces cerevisiae on pulsed electric field (PEF) treatment

  • Industrial Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The aim of this work is the evaluation of selenium accumulation and catalase activity in pulsed electric field (PEF) treatedSaccharomyces cerevisiae cells. Cultures ofS. cerevisiae in the medium containing selenium as sodium selenite were treated with PEF. Applied range of field parameters (field frequency of 1 Hz, intensity of 1.5 kV/cm and pulse duration of 1 ms) does not influence the changes of catalase activity which depend only on the concentration of selenium accumulated in the yeast cells. It was noted for the non-PEF-treated cultures that the accumulation of selenium in the yeast cells increased to 60 μg/g dry mass (DM) together with the increase of selenium concentration in medium from 1 to 3 μg/mL. Consequently, the activity of extra- and intra-cellular catalase also increased. At higher selenium concentrations in medium (4–6 ug/mL) its accumulation in the cells reached 127 μg/g DM which resulted in the decrease of catalase activity. In the PEF-treated cultures, twofold higher accumulation of selenium in the cells was obtained in the whole rang e of concentrations applied, which caused the significant decrease of catalase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronsson K., Rönner U. (2001). Influence of pH, water activity and temperature on the inactivation ofEscherichia coli andSaccharomyces cerevisiae by pulsed electric fields. Innov. Food Sci. Emerg. Technol., 2: 105–112.

    Article  CAS  Google Scholar 

  • Aronsson K., Rönner U., Borch E. (2005). Inactivation ofEscherichia coli, Listeria innocua andSaccharomyces cerevisiae in relation to membrane permeabilization and subsequent leakage of intracellular compounds due to pulsed electric field processing. Int. J. Food Microbiol., 99: 19–32.

    Article  CAS  PubMed  Google Scholar 

  • Barbosa-Canovas G.V., Gongora-Nieto M.M., Pothakamury U.R., Swanson B.G. (1999). Preservation of Foods with Pulsed Electric Field. Academic Press, San Diego, CA.

    Google Scholar 

  • Beck M., Shi Q., Morris V., Levander O. (1995). Rapid genomic evolution of a non-virulentCoxsackie virus B3 in selenium deficient mice results in selection of identical isolates. Nature Med., 1: 433–441.

    Article  CAS  PubMed  Google Scholar 

  • Bukowska B., Chajdys A., Duda W., Duchnowicz P. (2000). Catalase activity in human erythrocytes: effect of phenoxyherbicides and their metabolites. Cell Biol. Int., 24: 705–711.

    Article  CAS  PubMed  Google Scholar 

  • Burbano X., Miguez-Burbano M.J., Mccollister K., Zhang G., Rodriguez A., Ruiz P., Lecusay R., Shor-Posner G. (2002). Impact of a selenium chemoprevention clinical trial on hospital admissions of HIV-infected participants. HIV Clin. Trials, 3: 483–491.

    Article  PubMed  Google Scholar 

  • Combs G.F. (2001). Selenium in global food systems. Nutr. Cancer., 85: 517–547.

    CAS  Google Scholar 

  • Davis C.D., Uthus E.O. (2002). Dietary selenium and azadeoxycytidine treatment affect dimethylhydrazine-induced aberrant crypt formation in rat liver colon and DNA methylation in HT-29 cells. J. Nutr., 132: 292–297.

    CAS  PubMed  Google Scholar 

  • EC Scientific Committee on Food (2003). Opinion of the Scientific Committee on Food on the Revision of Reference Values for Nutrition Labelling. Commission of the European Communities, Brussels.

    Google Scholar 

  • Evrendilek G.A., Zhang H.Q., Richter E.R. (1999). Inactivation ofEscherichia coli O157:H7 andEscherichia coli 8739 in apple juice by pulsed electric field. J. Food Protect., 62: 793–796.

    CAS  Google Scholar 

  • Fiedurek J., Gromada A. (1997). Screening and mutagenesis of molds for improvement of the simultaneous production of catalase and glucose oxidase. Enzyme Microb. Technol., 20: 344–347.

    Article  CAS  Google Scholar 

  • Gilon N., Potin-Gautier M., Astruc M. (1996). Optimization of the determination of inorganic and organic selenium species using high-performance liquid chromatography — electrothermal atomic absorption spectrometry. J. Chromatogr. A., 750: 327–334.

    Article  CAS  Google Scholar 

  • Graczyk A., Konarski J., Radomska K. (1994). Selenium — its role and functions In metabolic processes of human’s organism. Mag. Med., 1: 31–34.

    Google Scholar 

  • Hammel CH., Kyriakopoulos A., Rösick U., Benhe D. (1997). Identification of selenocysteine and selenomethionine in protein hydrolysates by high-performance liquid chromatography of their o-phthaldialdehyde derivatives. Analyst, 122: 1359–1363.

    Article  CAS  PubMed  Google Scholar 

  • Hill K.E., Burk R.F., Lane J.M. (1987). Effect of selenium depletion and repletion on plasma glutathione-dependent enzymes in the rat. J. Nutr., 117: 99–104.

    CAS  PubMed  Google Scholar 

  • Ho S.Y., Mittal G.S. (1996). Electroporation of cells membranes: a review. Critical Rev. Biotechnol., 16: 349–362.

    Article  CAS  Google Scholar 

  • Hussain S., Slikker W., Ali S.F. (1995). Age-related change in antioxidant enzymes, superoxide dismutase, catalase, glutathione in different regions of mouse brain. Intern. J. Develop. Neuros., 13: 811–817.

    Article  CAS  Google Scholar 

  • Hülsheger H., Potel J., Niemann E.G. (1983). Electric field effects on bacteria and yeast cells. Radiat. Environ. Biophys., 22: 149–162.

    Article  PubMed  Google Scholar 

  • Oldfield J.E. (1999). Selenium World Atlas. Selenium-Tellurium Development Association, Grimbergen, p. 83.

    Google Scholar 

  • Pankiewicz U., Jamroz J. (2007). The influence of a pulsating electric field on selenium accumulation inKluyveromyces marxianus cells. J. Basic Microbiol., 1: 50–55.

    Article  Google Scholar 

  • Ponce de Leon C.A., Bayon M.M., Paquin C., Caruso J.A. (2002). Selenium incorporation intoSaccharomyces cerevisiae cells: a study of different incorporation methods. J. Appl. Microbiol., 92: 602–610.

    Article  CAS  PubMed  Google Scholar 

  • Rayman M.P. (2002). The argument for increasing selenium intake. Proc. Nutr. Soc., 61: 203–215.

    Article  CAS  PubMed  Google Scholar 

  • Rotruck J.T., Pope A.L., Ganther H.E., Swanson A.B., Hafeman D.G., Hoekstra W.G. (1973). Selenium: biochemical role as a component of glutathione peroxidase. Science (Washington, D.C.), 179: 588–590.

    Article  CAS  Google Scholar 

  • Schellhorn H.E. (1995). Regulation of hydroperoxidase (catalase) expression inEscherichia coli. FEMS Microb. Lett., 131: 113–119.

    Article  CAS  Google Scholar 

  • Sekhar S., Bhat N., Bhat S.G. (1999). Preparation of detergent permeabilizet Bakers’ yeast whole cell catalase. Proc. Biochem., 34: 349–354.

    Article  CAS  Google Scholar 

  • Tapiero H., Townsend D.M., Tew K.D. (2003). The antioxidant role of selenium and seleno-compounds. Biomed. Pharmacother., 57: 134–144.

    Article  CAS  PubMed  Google Scholar 

  • Thomson C.D. (2004). Assessment of requirements for selenium and adequacy of selenium status: a review. Eur. J. Clin. Nutr., 58: 391–402.

    Article  CAS  PubMed  Google Scholar 

  • Tsong T.Y. (1990). On electroporation of cells membranes and some related phenomena. Bioelectrochem. Bioenerg., 24: 271–295.

    Article  CAS  Google Scholar 

  • Tsong T.Y. (1992). Molecular recognition and processing of periodic signals in cells: study of activation of membrane ATPases by alternating electric fields. Biochim. Biophys. Acta, 1113: 53–70.

    CAS  PubMed  Google Scholar 

  • Vega-Mercado H., Powers J.R., Barbosa-Canovas G.V., Swanson B.G. (1995). Plasmin inactivation with pulsed electric fields. J. Food Sci., 60: 1143–1146.

    Article  CAS  Google Scholar 

  • Weaver J.C., Chizmadzhev Y.A. (1996). Theory of electroporation: a review. Bioelectrochem. Bioenerg., 41: 135–160.

    Article  CAS  Google Scholar 

  • Whanger P.D. (2004). Selenium and its relationship to cancer: an update. Br. J. Nutr., 91: 11–28.

    Article  CAS  PubMed  Google Scholar 

  • Wouters P.C., Dutreux N., Smelt J.P.P., Lelieveld H.M. (1999). Effects of pulsed electric fields on inactivation kinetics ofListeria innocua. Appl. Environ. Microbiol., 62: 5364–5371.

    Google Scholar 

  • Zhang Q., Chang F.J., Barbosa-Canovas G.V., Swanson B.G. (1994). Inactivation of microorganisms in a semisolid model food using high voltage pulsed electric fields. LWT, 27: 538–543.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urszula Pankiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pankiewicz, U., Jamroz, J. Accumulation of selenium and catalase activity changes in the cells ofSaccharomyces cerevisiae on pulsed electric field (PEF) treatment. Ann. Microbiol. 58, 239–243 (2008). https://doi.org/10.1007/BF03175323

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175323

Key words

Navigation