Skip to main content

Expression of recombinantPichia pastoris X33 phytase for dephosphorylation of rice bran fermented liquid


TheAspergillus ficuum phytase genephyA was overexpressed inPichia pastoris X33 after replacing Buffered glycerol-complex medium (BMGY medium) using 1% (v/v) glycerol with fresh Buffered methanol-complex medium (BMMY medium) using 1% (v/v) methanol (on daily basis) as carbon sources. The phytase activity increased evidently with the induction time, and reached 200 U mL−1 after 9 days of induction. We examined the possibility of employing thus obtained phytase to recover phosphorus from the fermented liquid of rice bran. When the 0.1 M sodium acetate buffer was replaced with de-ionised water (pH 5.5±0.1) as an enzyme reaction solution, there was an increase in the phosphorus recovery with respect to time and reached 1.31% after 24 h incubation contributing to 81% release of inorganic P from the rice bran phytate. Studies on hydrolysis of rice bran phytate by the addition of different concentrations of phytase ranging from 0–200 U mL−1 produced through the recombinant yeast shows no significant effect in the rate of phytate hydrolysis at enzyme activities of 200, 100, 50 U mL−1. However, rate of hydrolysis varied significantly at 20, 5, 0 U mL−1 enzyme concentrations.

This is a preview of subscription content, access via your institution.


  1. Bae H.D., Yanke L.J., Cheng K.J., Selinger L.B. (1999). A novel staining method for detecting phytase activity. J. Microbiol. Methods, 39: 17–22.

    Article  CAS  PubMed  Google Scholar 

  2. Chen C.C., Wu P.H., Huang C.T., Cheng K.J. (2004). APichia pastoris fermentation strategy for enhancing the heterologous expression of anEscherichia coli phytase. Enzyme Microbiol. Technol., 35: 315–320.

    Article  CAS  Google Scholar 

  3. Erdman L.W., Poneros S.K. (1989). Phytic acid interaction with divalent cations in foods and in the gastrointestinal tract. Adv. Exp. Med. Biol., 249:161–171.

    CAS  PubMed  Google Scholar 

  4. Han Y., Lei X.G. (1999). Role of glycosylation in functional expression of anAspergillus niger phytase (phyA) inPichia pastoris. Arch. Biochem. Biophys., 364:83–90.

    Article  CAS  PubMed  Google Scholar 

  5. Han W.Y., Wilfred, A.G. (1988). Phytate hydrolysis in soybean and cottonseed meals byAspergillus ficuum phytase. J. Agric. Food Chem., 36:259–262.

    Article  CAS  Google Scholar 

  6. Haefner S., Knietsch A., Scholten E., Braun J., Lohscheidt M., Zelder O. (2005). Biotechnological production and applications of phytases. Appl. Microbiol. Biotechnol., 68:588–597.

    Article  CAS  PubMed  Google Scholar 

  7. Howson S. J., Davis R. P. (1983). Production of phytate-hydrolysing enzyme by some fungi, Enzyme Microb. Technol., 5:377–382.

    Article  CAS  Google Scholar 

  8. Lei X.G., Ku P.K., Miller E.R., Yokoyama M.T. (1993). Supplementing corn-soybean meal diets with microbial linearly improves phytate P utilization by weanling pigs. J. Anim. Sci., 71: 3359–3367.

    CAS  PubMed  Google Scholar 

  9. Maga J.A. (1982). Phytate: its chemistry, occurrence, food interactions, nutritional significance, and methods of analysis. J. Agric. Food Chem., 30:1–9.

    Article  CAS  Google Scholar 

  10. Mayer A.F., Hellmuth K., Schlieker H., Lopez-Ulibarri Oertel R.S., Dahlems U., Strasser A. W. M., van Loon A. P. G. M. (1999). An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains ofHansenula polymorpha. Biotech. Bioeng., 63:373–381.

    Article  CAS  Google Scholar 

  11. Reddy N.R., Sathe S.K., Salunkhe D.K., (1982). Phytates in legumes and cereals. Adv. Food Res., 28:1–92.

    CAS  PubMed  Google Scholar 

  12. Rimbach G.H., Ingelmann J., Pallauf J. (1994). The role of phytase in the dietary bioavailability of minerals and trace elements. Ernahrungsforschung. 39:1–10.

    Google Scholar 

  13. Shieh E.T., Ware J.H. (1968). Survey of microorganisms for the production of extracellular phytase. Appl Microbiol., 16:1348–1351.

    CAS  PubMed  Google Scholar 

  14. Shimizu M. (1992). Purification and characterization of phytase fromBacillus subtilis (natto) N-77. Biosci. Biotechnol. Biochem., 56:1266–1269.

    Article  CAS  Google Scholar 

  15. Quan C.L., Zhang Y., Wang Y., Ohta Y. (2001). Production of phytase in low phosphate medium by a novel yeastCandida krusei. J. Biosci. Bioeng., 92:154–160.

    Article  CAS  PubMed  Google Scholar 

  16. Ullah A.H.J., Sethumadhavan K. (2003).PhyA gene product ofAspergillus ficuum andPeniophora lycii produces dissimilar phytases. Biochem. Biophy. Res. Commun., 303: 463–468.

    Article  CAS  Google Scholar 

  17. Van Hartingsveldt W., van Zeijl C.M.J.G.M., Harteveld M., Gouka R.J., Guykerbuyk Luiten M.E.G., van Paridon R.G.M.M., Selten G.C., Veenstra A.E., van Gorcom R.F.M., van den Hondel C.A.M.J.J. (1993). Cloning, characterization and expression of the phytase-encoding genephyA ofAspergillus niger. Gene. 127; 87–94.

    Article  PubMed  Google Scholar 

  18. Zhang Y., Liu R., Wu X. (2007). The proteolytic systems and heterologous proteins degradation in the methylotrophic yeastPichia pastoris. Ann. Microbiol., 57: 553–560.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Chiu-Chung Young.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chang, MH., Young, CC., Chien, SY. et al. Expression of recombinantPichia pastoris X33 phytase for dephosphorylation of rice bran fermented liquid. Ann. Microbiol. 58, 233–238 (2008).

Download citation

Key words

  • phytase
  • Pichia pastoris X33
  • phosphorus
  • rice bran