Skip to main content
Log in

Stable expression of glucoamylase gene in industrial strain ofSaccharomyces pastorianus with less diacetyl produced

  • Industrial Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

An integrating plasmid pMGI6 carrying glucoamylase gene (GLA) and using the yeast α-acetolactate synthase gene (ILV2) as the recombination sequence, was constructed from pBluescript II SK. Theilv2∶∶GLA fragment released from pMGI6 was introduced into the brewing yeastSaccharomyces pastorianus and the resulting recombinant strain was able to utilise starch as the sole carbon source, its glucoamylase activity was 6.3 U ml−1 and its a-acetolactate synthase activity was lowered by 33%. Fermentation tests confirmed that the diacetyl concentration in wort fermented by the recombinant strain was reduced by 66% and the maturation time was reduced from 7 to 4 days. The beer fermented by the recombinant strain under industrial operating conditions satisfied the high quality demands and the strain could be used in beer production safely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bamforth C.W. (2002). Nutritional aspects of beer-a review. Nutr. Res., 22: 227–237.

    Article  CAS  Google Scholar 

  • Birol G., Önsan Z.Ï., Klrdar B., Oliver S.G. (1998). Ethanol production and fermentation characteristics of recombinantSaccharomyces cerevsiae strains grown on starch. Enzyme Microb. Technol., 22: 672–677.

    Article  CAS  Google Scholar 

  • Burke D., Dawson D., Stearns T., Eds (2000). Methods in Yeast Genetics, Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Cortacero-Ramírez S., Hernáinz-Bermúdez de Castro M., Segura-Carretero A., Cruces-Blanco C., Fernández-Gutiérrez A. (2003). Analysis of beer components by capillary electrophoretic methods. Trends Anal. Chem., 22: 7–8.

    Article  Google Scholar 

  • Faridmoayer A., Scaman C.H. (2004). An improved purification procedure for soluble processing α-glucosidase I fromSaccharomyces cerevisiae overexpressing CWH41. Protein Expr. Purif., 33: 11–18.

    Article  CAS  PubMed  Google Scholar 

  • Gundlapalli Moses S.B., Cordero Otero R.R., La Grange D.C., van Rensburg, P., and Pretorius, I.S. (2002). Different genetic backgrounds influence the secretory expression of theLKA1-encoddedLipomyces kononenkoae α-amylase in industrial strains ofSaccharomyces cerevisiae. Biotechnol. Lett., 24: 651–656.

    Article  Google Scholar 

  • Hill J.E., Meyers A.M., Koerner T.J., Tzagoloff A. (1993). Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast, 9: 163–167.

    Google Scholar 

  • Kang N.Y., Park J.N., Chin J.E., Lee H.B., Im S.Y., Bai S. (2003). Construction of an amylolytic industrial strain ofSaccharomyces cerevisiae containing theSchwanniomyces occidentalis α-amylase gene. Biotechnol. Lett., 25: 1847–1851.

    Article  CAS  PubMed  Google Scholar 

  • Liu Z.R., Zhang G.Y., Liu S.G. (2004). Constructing an amylolytic brewing yeastSaccharomyces pastorianus suitable for accelerated brewing. J. Biosci. Bioeng., 98: 414–419.

    CAS  PubMed  Google Scholar 

  • Nevoigt E.; Pilger R.; Mast-Gerlach E.; Schmidt U.; Freihammer S.; Eschenbrenner M., Garbe L., Stahl U. (2002). Genetic engineering of brewing yeast to reduce the content of ethanol in beer. FEMS Yeast Res., 2: 225–232.

    CAS  PubMed  Google Scholar 

  • Park, S.H., Xing, R., Whitman, W.B. (1995). Nonenzymatic acetolactate oxidation to diacetyl by flavin, nicotinamide and quinine coenzymes. Biochem. Biophys. Acta, 1245: 366–370.

    PubMed  Google Scholar 

  • Parent S.A., Fenimore C.M., Bostian K.A. (1985). Vector systems for the expression, analysis and cloning of DNA sequences inS. cerevisiae. Yeast, 1: 83–138.

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J., Russell D.W., Eds (2001). Molecular Cloning, A Laboratory Manual, 3rd edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Shigechi H., Koh J., Fujita Y., Matsumoto T., Bito Y., Ueda M., Satoh E., Fukuda H., Kondo A. (2004). Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain co-displaying glucoamylase and α-amylase. Appl. Environ. Microbiol., 70: 5037–5040.

    Article  CAS  PubMed  Google Scholar 

  • Short J.M., Fernandez J.M., Sorge J.A., and Huse W.D. (1988). ψ ZAP: A bacteriophage ψ expression vector with in vivo excision properties. Nucleic Acids Res., 16: 7583.

    Article  CAS  PubMed  Google Scholar 

  • Steyn A.J.C., Pretorius I.S. (1991). Co-expression of aSaccharomyces diastaticus glucoamylase-encoding gene and aBacillus amyloliquefaciens α-amylase-encoding gene inSaccharomyces cerevisiae. Gene, 100: 85–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-Ran Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, ZR., Zhang, GY., Li, J. et al. Stable expression of glucoamylase gene in industrial strain ofSaccharomyces pastorianus with less diacetyl produced. Ann. Microbiol. 57, 233–237 (2007). https://doi.org/10.1007/BF03175212

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175212

Key words

Navigation