Skip to main content
Log in

Case histories of isostatic factor variations along carbonate buildups

  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

A simple procedure for estimating the fraction of the mantle response that is actually isostatic is used here with four carbonate buildups to provide variations of the isostatic fraction along the buildups. In all cases it is found that the fraction is small compared to that needed to allow isostasy to be the dominant component. Tectonic variations, sea-level effects, and compaction of underlying substrates after carbonate deposition all contribute to the non-isostatic response. In addition, the relative variation of the equivalent isostatic factor along each carbonate buildup is shown to be a direct consequence of changes in tectonism, sea-level and/or compaction with lateral position. These identifications are made through use of the general geologic description of the region for each buildup. The isostatic factor method is thus shown to provide a simple and powerful procedure for identifying not only the over-all non-isostatic response but also variations of the non-isostatic factors along the buildups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • DREES, N.C.M., 1988, The Middle Devonian Sub-Watt Mountain Unconformity Across the Tathlina Uplift; District of Mackenzie and Northern Alberta, Canada, in Devonian of the World (eds. N.J. McMillan, A.F. Embry and D.J. Glass).Can. Soc. Petrol. Geol., Calgary, Canada, p. 477–494.

    Google Scholar 

  • FLÜGEL, E, and FLÜGEL-KAHLER, E., 1992, Phanerozoic Reef Evolution:Basic Questions and Data Base, in Facies 26, p. 167–278.

    Google Scholar 

  • JAMES, N.P., 1983, in P.A. Scholle, D.G. Bebout, and C.H. Moore, eds., Carbonate depositional environments:American Association of Petroleum Geologists Memoir 33, p. 345–444.

    Google Scholar 

  • LERCHE, I. and PERLMUTTER, M.A., 1993, Fractional isostatic mantle compensation of carbonate buildups.American Association of Petroleum Geologists, Bulletin, v. 77, p. 276–279.

    Google Scholar 

  • RUDOLPH, K.W. and LEHMANN, P.J., 1989, Platform Evolution and Sequence Stratigraphy of the Natuna Platform, South China Sea, in Controls on Carbonate Platform and Basin Development,SEPM Special Publication No. 44, p. 353–361.

  • SCHLAGER, W., 1981, The paradox of drowned reefs and carbonate platforms:Geological Society of America Bulletin, v. 92, p. 197–211.

    Article  Google Scholar 

  • SIMO, A., 1989, Upper Cretaceous Platform-to-Basin Depositional-Sequence Development, Tremp Basin, South-central Pyrennes, Spain, in Controls on Carbonate Platforms and Basin Development,SEPM Special Publication No. 44, p. 365–378.

  • SMITH, D.B., 1981, The Magnesian Limestone (Upper Permian) Reef Complex of Northeastern England,SEPM Special Publication No. 30, p. 161–186.

    Google Scholar 

  • WERMUND, E.G., 1975, Upper Pennsylvanian limestone banks, north central Texas:University of Texas Bureau of Economic Geology, Circular 75–3.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perlmutter, M.A., Lerche, I. Case histories of isostatic factor variations along carbonate buildups. Carbonates Evaporites 9, 89–94 (1994). https://doi.org/10.1007/BF03175188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175188

Keywords

Navigation