Skip to main content
Log in

Effects of carbon and nitrogen sources on the induction and repression of chitinase enzyme fromMetarhizium anisopliae isolates

  • Industrial Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Metarhizium anisopliae, an entomopathogenic hyphomycete, is being used effectively in Integrated Pest Management (IPM) system. Foliar application of these fungi is quite satisfactory as it invades its host by adhering to insect cuticles and formation of penetration structures called appresoria, which produces various extracellular enzymes, including chitinase that causes the insect cuticle breaching. The induction and repression mechanism of chitinase activity is not entirely understood and activity of this enzyme is different in response to different carbon and nitrogen sources. This report illustrates the effect of two carbon sources viz. colloidal chitin and dextrose and a nitrogen source, yeast extract on the chitinase production of fourteenM. Anisopliae isolates. The chitinase activity varied among the isolates and the different media used. A high enzymatic activity was observed in the medium containing an extra nitrogen source (yeast extract) followed by the medium containing colloidal chitin as a sole source of carbon and nitrogen. The exochitinase activity and the chitinase activity gel were also studied for the isolates showing high chitinase enzyme production. An array of chitinase isozymes were observed on chitinase activity gel with a common 14.3 kDa enzyme for all the isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson S.O. (1979). Biochemistry of insect cuticle. Ann. Rev. Entomol., 24: 29–61.

    Article  Google Scholar 

  • Bajan C., Kalalova S., Samsinakova A., Wojciechowska M. (1979). The relationship between infectious activities of entomopathogenic fungi and their production of enzymes. Bull. Acad. Pol. Sci. Cl. 2 Ser. Sci. Biol., 27: 963–968.

    CAS  Google Scholar 

  • Barreto C.C., Charley C.S, Schrank A., Vainstein M.H. (2004). Distribution of chitinases in the entomopathogenMetarhizium anisopliae and effect ofN-acetyl glucosamine in protein secretion. Curr. Microbiol., 48 (2): 102–107.

    Article  CAS  PubMed  Google Scholar 

  • Bradford M.M. (1976). A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem., 72 (1–2): 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Campos R.A, Arruda W., Boldo J.T., De silva M.V., De Barros N.M., De Azevado J.L., Schrank A, Vainstein M.H. (2005).Boophilus microplus infection byBeauveria amorpha andBeauveria bassiana: SEM analysis and regulation of subtilisin-like proteases and chitinases. Curr. Microbiol., 50 (5): 257–261.

    Article  CAS  PubMed  Google Scholar 

  • Charnley A.K., St. Leger R.J. (1991). The role of cuticle degrading enzymes in fungal pathogenesis in insects. In: Cole G.T., Hoch M.C., Eds, The Fungal Spore and Disease Initiation in Plants and Animals. Plenum, New York, pp. 267–286.

    Google Scholar 

  • Cooper R.M., Wood R.K.S (1975). Regulation of synthesis of cell wall degrading enzymes byVerticillium albo-atrum andFusarium oxysporum f. sp.lycopersice. Physiol. Plant Pathol., 5 (2): 135–156.

    Article  CAS  Google Scholar 

  • Coudron T.A., Kroha M.J., Ignoffo C.M. (1984). Levels of chitinolytic activity during development of three entomopathogenic fungi. Comp. Biochem. Physiol., 79 (3): 339–348.

    Google Scholar 

  • Cruz De la J., Manuel R., Lora J.M., Gallego A.H., Dominguez F., Toro J.A.P., Antonio L., Benitez T. (1993). Carbon source control on glucanases, chitobiase and chitinase fromTrichoderma harzianum. Arch. Microbiol., 159 (4): 316–322.

    Article  Google Scholar 

  • De Moraes C.K., Schrank A., Vainstein M.H. (2003). Regulation of extracellular chitinases and proteases in the entomopathogen and acaricideMetarhizium anisopliae. Curr. Microbiol. 46 (3):205–221.

    Article  Google Scholar 

  • Deutscher J. (2008). The mechanisms of carbon catabolite repression in bacteria. Curr. Opin. Microbiol., 11 (2): 87–93.

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed G.N., Coudron T.A., Ignoffo C.M., Riba G. (1989). Chitinolytic activity and virulence associated with native and mutant isolates of an entomopathogenic fungus,Nomuraea rileyi. J. Invertebr. Pathol., 54 (3): 394–403.

    Article  Google Scholar 

  • Fang W., Leng B., Xiao Y., Jin K., Ma J., Fan Y., Feng J., Yang X., Zhang Y., Pei Y. (2005). Cloning ofBeauveria bassiana chitinase geneBbchit1 and its application to improve fungal strain virulence. Appl. Environ. Microbiol., 71 (1): 363–370.

    Article  CAS  PubMed  Google Scholar 

  • Gabriel B.P. (1968). Enzymatic activities of some entomopathogenous fungi. J. Invertebr. Pathol., 11 (1): 70–81.

    Article  CAS  Google Scholar 

  • Inglis D.G., Goettel M.S., Butt T.M., Strasser H. (2001). Use of hyphomyecete fungi for managing insect pests. In: Butt T.M., Jackson C.W., Magan N., Eds; Fungi as Biocontrol Agents-Progress Problems and Potential. 1st edn., CAB International, Wallingford, UK, pp. 23–69.

    Google Scholar 

  • Kang S.C., Park S., Lee D.G. (1999). Purification and characterization of a novel chitinase from the entomopathogenic fungus,Metarhizium anisopliae. J. Invertebr. Pathol., 73: 276–281.

    Article  CAS  PubMed  Google Scholar 

  • Lopes M.A., Gomes D.S., Bello Koblitz M.G., Pirovani C.P., de Mattos Cascardo J.C., Goes-Neto A., Micheli F. (2008). Use of response surface methodology to examine chitinase regulation in the basidiomyceteMoniliophtora perniciosa. Mycol. Res., 112 (3): 399–406.

    Article  CAS  PubMed  Google Scholar 

  • Muzzarelli M. (1999). Native, industrial and fossil chitins. In: Jolles P., Muzzarelli R., Eds, Chitin and Chitinases, Birkhauser, Basel.

    Google Scholar 

  • Nawani N.N., Kapadnis B.P. (2005). Optimization of chitinase production using statistics based experimental designs. Process Biochem., 40 (2): 651–660.

    Article  CAS  Google Scholar 

  • Omero C., Benjamin A., Horwitz, Chet I. (2001). A convenient fluorometric method for the detection of extracellularN-acetylglucosaminidase production by filamentous fungi. J. Microbiol. Methods, 43 (3): 165–169.

    Article  CAS  PubMed  Google Scholar 

  • Pegg G.F., Young D.H. (1982). Purification and characterization of chitinase enzymes from healthy andVerticillium alboatrum infected tomato plants and fromV. Alboatrum. Physiol. Plant Pathol., 21 (3): 389–409.

    Article  CAS  Google Scholar 

  • Reissig J.L., Strominger J.L, Leloir L.F. (1955). A modified colorimetric method for the estimation of n-acetyl amino sugars. J. Biol. Chem., 959–966.

  • Ronne H. (1995). Glucose repression in fungi. Trends Genet., 11 (1): 12–17.

    Article  CAS  PubMed  Google Scholar 

  • Sandhya C., Krishna Adapa L., Madhavan Nampoothiri K., Binod P., Szakacs G., Pandey A. (2004). Extracellular chitinase production byTrichoderma harzianum in submerged fermentation. J. Basic Microbiol., 44 (1): 49–58.

    Article  CAS  PubMed  Google Scholar 

  • Simahara K., Takiguchi Y. (1988). Preparation of crustacean chitin. Methods Enzymol., 161: 417–423.

    Article  Google Scholar 

  • St. Leger R.J., Cooper R.M., Charnley A.K. (1986). Cuticle-degrading enzymes of entomopathogenic fungi: Regulation of production of chitinolytic enzymes. J Gen Microbiol., 132: 1509–1517.

    CAS  Google Scholar 

  • St. Leger R.J., Staples R.C., Roberts D.W. (1993). Entomopathogenic isolates ofMetarhizium anisopliae, Beauveria bassiana, Aspergillus flavus produce multiple extracellular chitinase isozymes. J. Invertebr. Pathol., 61 (1): 81–84.

    Article  CAS  Google Scholar 

  • St. Leger R.J., Joshi L., Bidochka M.J., Rizzo N.W., Roberts D.W. (1996). Biochemical characterization and ultra structural localization of two extracellular trypsins produced byMetarhizium anisopliae in infected insect cuticles. Appl. Environ. Microbiol., 62 (4): 1257–1264.

    CAS  PubMed  Google Scholar 

  • St. Leger R.J., Joshi L., Roberts D.W. (1998). Ambient pH is a major determinant in the expression of cuticle degrading enzymes and hydrophobin byMetarhizium anisopliae. Appl. Environ. Microbiol., 64 (2): 709–713.

    CAS  PubMed  Google Scholar 

  • Tamayo E.N., Villanueva A., Hasper A.A., De Graff L.H., Ramon D., Orejas M. (2008). CreA mediates repression of the regulatory gene xlnR which controls the production of xylanolytic enzymes inAspergillus nidulans. Fungal Genet. Biol., 45 (6): 984–993.

    Article  CAS  PubMed  Google Scholar 

  • Trudel J., Asselin A. (1989). Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal. Biochem., 178 (2): 362–366.

    Article  CAS  PubMed  Google Scholar 

  • Yanagita T. (1980). The formaldehyde resistance ofAspergillus fungi attacking silkworm larvae: the relationship between pathogenicity to silkworm larvae and chitinase activity ofAspergillus flavus oryzae. J. Seric. Jpn., 49: 440–445.

    Google Scholar 

  • Yanai K., Takaya N., Kojima N., Horiuchi H., Ohta A., Takagi M. (1992). Purification of two chitinases fromRhizopus oligosporus and isolation and sequencing of the encoding genes. J. Bacteriol., 174 (22): 7398–7406.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurvinder Kaur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhar, P., Kaur, G. Effects of carbon and nitrogen sources on the induction and repression of chitinase enzyme fromMetarhizium anisopliae isolates. Ann. Microbiol. 59, 545–551 (2009). https://doi.org/10.1007/BF03175144

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175144

Key words

Navigation