Skip to main content
Log in

A BSH volumetric activity dependent method for determination of coprecipitated cholesterol and the assimilation/coprecipitation proportion of cholesterol removal byLactobacillus plantarum

  • Food Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Thein vitro removal of cholesterol by probiotics has been categorized into two phases: assimilation by bacterial cells, and coprecipitation with deconjugated bile salts. Bile salt hydrolase (BSH) produced by probiotics catalyzes the deconjugation reaction of bile salts. A novel method that depends on the BSH volumetric activity (μg min−1 ml−1 bacteria culture) was developed to evaluate the cholesterol coprecipitation in MRS culture supplemented with synthetic human bile and cholesterol. Six probioticLactobacillus plantarum strains from the healthy youth intestinal tract were screened. The amount of cholesterol coprecipitation that occurred in eachL. Plantarum culture was then determined according to the method developed here and verified by a modified redissolution method. Next, the assimilation/coprecipitation proportion of cholesterol removal for each strain was deduced. The results revealed that after 12 h of incubation, all six strains ofL. plantarum removed a larger amount of cholesterol by assimilation (63.45–81.62%) than by coprecipitation (18.38–36.55%). Finally, we investigated the effects of synthetic human bile on BSH specific activity (μg min−1 mg−1 protein) and found that the BSH specific activity of all strains showed a rapid, limited and reversible decrease in response to synthetic human bile stress. We also found that variations in the BSH specific activity were related to the growth phases and that the maximum emerged after approximately 8 h (middle exponential phase) of growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson J.W., Gilliland S.E. (1999). Effect of fermented milk (yogurt) containingLactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans. J. Am. College Nutr., 18: 43–50.

    CAS  Google Scholar 

  • Ashar M.N., Prajapati J.B. (2000). Verification of hypocholesterolemic effect of fermented milk on human subjects with different cholesterol levels. Folia Microbiol. (Praha), 45: 263–268.

    Article  CAS  Google Scholar 

  • Begley M., Hill C., Gahan C.G.M. (2006). Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol., 72: 1729–1738.

    Article  CAS  PubMed  Google Scholar 

  • Brashears M.M., Gilliland S.E., Buck L.M. (1998). Bile salt deconjugation and cholesterol removal from media byLactobacillus casei. J. Dairy Sci., 81: 2103–2110.

    CAS  PubMed  Google Scholar 

  • De Boever P., Wouters R., Verschaeve L., Berckmans P., Schoeters G., Verstraete W. (2000). Protective effect of the bile hydrolaseactiveLactobacillus reuteri against bile salt cytotoxicity. Appl. Microbiol. Biotechnol., 53: 709–714.

    Article  PubMed  Google Scholar 

  • De Man J.C.A., Rogosa M., Sharpe M.E. (1960). Medium for the cultivation of lactobacilli. J. Appl. Bacteriol., 23: 130–136.

    Google Scholar 

  • De Smet I., van Hoorde L., Woestyne M.V., Christiaens H., Verstraete W. (1995). Significance of bile salt hydrolase activity of lactobacilli. J. Appl. Bacteriol., 79: 292–301.

    PubMed  Google Scholar 

  • Fuller R. (1992). Probiotics: The Scientific Basis, 1st edn., Chapman & Hall, Inc., London.

    Google Scholar 

  • Gilliland S.E., Nelson C.R., Maxwell C. (1985). Assimilation of cholesterol byL. acidophilus. Appl. Environ. Microbiol., 49: 377–381.

    CAS  PubMed  Google Scholar 

  • Grill J.P., Cayuela C., Antoine J.M., Schneider F. (2000). Effects ofLactobacillus amylovorus andBifidobacterium breve on cholesterol. Lett. Appl. Microbiol., 31: 154–156.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann A.F. (1976). The enterohepatic circulation of bile acids in man. Adv. Intern. Med., 21: 501–534.

    CAS  PubMed  Google Scholar 

  • Klaver F.A.M., Van der Meer R. (1993). The assumed assimilation of cholesterol by lactobacilli andBifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl. Environ. Microbiol., 59: 1120–1124.

    CAS  PubMed  Google Scholar 

  • Law M.R., Wald N.J., Wu T., Hackshaw A., Bailey A. (1994). Systematic underestimation of association between serum cholesterol concentration and ischaemic heart disease in observational studies: data from BuPA study. Brit. Med. J., 308: 363–366.

    CAS  PubMed  Google Scholar 

  • Lowry O.H., Rosenbrough N.J., Farr A. L., Randall R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193: 265–275

    CAS  PubMed  Google Scholar 

  • Mann G.V. (1977). A factor in yogurt which lowers cholesterolemia in man. Artherosclerosis, 26: 335–340.

    Article  CAS  Google Scholar 

  • Manson J.E., Tosteson H., Ridker P.M., Satterfield S., Hebert P., O’Connor G.T. (1992). The primary prevention of myocardial infarction. N. Engl. J. Med., 326: 1406–1416.

    Article  CAS  PubMed  Google Scholar 

  • McDonald L.C., Fleming H.P., Hassan H.M. (1990). Acid tolerance ofLeuconostoc mesenteroides andLactobacillus plantarum. Appl. Environ. Microbiol., 56: 2120–2124.

    CAS  PubMed  Google Scholar 

  • Noh D.O., Kim S.H., Gilliland S.E. (1997). Incorporation of cholesterol into the cellular membrane ofLactobacillus acidophilus ATCC 43121. J. Dairy. Sci., 80: 3107–3113.

    CAS  PubMed  Google Scholar 

  • Parvez S., Kim H.Y., Lee H.C. Kim D.S. (2006). Bile salt hydrolase and cholesterol removal effect byBifidobacterium bifidum NRRL 1976. World J. Microbiol. Biotechnol., 22: 455–459.

    Article  CAS  Google Scholar 

  • Pawan R., Bhatia A. (2007). Systemic immunomodulation and hypocholesteraemia by dietary probiotics: a clinical study. J. Clin. Diag. Res., 6: 467–475.

    Google Scholar 

  • Pereira D.I.A., Gibson G.R. (2002). Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the gut. Appl. Environ. Microbiol., 68: 4689–4693.

    Article  CAS  PubMed  Google Scholar 

  • Reynier M.O., Montet J.C., Gerolami A., Marteau C., Crotte C., Montet A.M., Mathieu S. (1981). Comparative effects of cholic, chenodeoxycholic and ursodeoxycholic acids on micellar solubilization and intestinal absorption of cholesterol. J. Lipid Res., 22: 467–473.

    CAS  PubMed  Google Scholar 

  • Rudel L.L., Morris M.D. (1973). Determination of cholesterol usingo-phthalaldehyde. J. Lipid Res., 14: 364–366.

    CAS  PubMed  Google Scholar 

  • Suvarna V.C., Boby V.U. (2005). Probiotics in human health: A current assessment. Curr. Sci., 88: 1744–1748.

    Google Scholar 

  • Tahri K., Grill J.P., Schneider F. (1996). Bifidobacteria strain behavior toward cholesterol: coprecipitation with bile salts and as similaton. Curr. Microbiol., 33: 187–193

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H., Doesburg K., Iwasaki T., Mierau I. (1999). Screening of lactic acid bacteria for bile salt hydrolase activity. J. Dairy Sci., 82: 2530–2535.

    Article  CAS  PubMed  Google Scholar 

  • Taranto M.P., Gonzalez de Llano D., Valdez G.F. (1999). Inhibition ofListeria monocytogenes by metabolic end products of BSH+ lactic acid bacteria. Milchwissenschaft, 51: 22–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Hang, X., Tan, J. et al. A BSH volumetric activity dependent method for determination of coprecipitated cholesterol and the assimilation/coprecipitation proportion of cholesterol removal byLactobacillus plantarum . Ann. Microbiol. 59, 469–475 (2009). https://doi.org/10.1007/BF03175133

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175133

Key words

Navigation