Skip to main content
Log in

Purple anoxygenic phototrophic bacteria distribution in Tunisian wastewater stabilisation plant exhibiting red water phenomenon

  • Ecological and Environmental Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Both eutrophication and thermal stratification lead to degradation of wastewater treatment efficiency and have a major effect on the wastewater pond biology, but their effects on phototrophic anoxygenic bacterial community is not as well understood. Terminal restriction fragment length polymorphism analysis proved to be a valuable technique that could resolve the diversity and shift of the purple anoxygenic phototrophic community composition in three stage wastewater stabilization ponds (WSP) exhibiting periodically red water phenomenon. Chemical and biological parameters confirmed the eutrophic state during the appearance of the red water. Concomitantly a decrease of ponds performances is reported with total removal percentage of 27, 36 and 43% for Total suspended solid (TSS), DBO5 and DCO, respectively. By targeting thepufM gene, 74 Terminal restriction fragments (TRFs) were detected in the three studied ponds which 78% were located in the anaerobic and facultative ponds. Simpson (D) and Shannon (H′) diversity index showed a loss of phototrophic bacterial diversity from the anaerobic to the maturation pond, especially in the water phase. Principal coordinate analysis (PCoA) of bothHpaII andHaeIII — T-RFLP profiles, allowed deducting a differential distribution between the water and sediments samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abis K.L., Mara D. (2006). Temperature measurement and stratification in facultative waste stabilisation ponds in the UK climate. Environ. Monit. Assest., 114: 35–47.

    Article  Google Scholar 

  • Achenbach L.A., Carey J., Madigan M.T. (2001). Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments. Appl. Environ. Microbiol., 6: 2922–2926.

    Article  Google Scholar 

  • APHA — American Public Health Association (1995). Standard methods for the examination of water and wastewater, 19th edn., American Public Health Association.

  • Atlas R.M., Bartha R. (1987). Microbial Ecology: Fundamentals and Applications, 2nd edn., Benjamin Cummings Publishing Co. Inc., Menlo Park, CA.

    Google Scholar 

  • Blackwood C.B., Hudleston D., Zak D.R., Buyer J.S. (2007). Interpreting ecological diversity indices applied to terminal restriction fragment length polymorphism data: insights from simulated microbial communities. Appl. Environ. Microbiol, 73: 5276–5283.

    Article  CAS  PubMed  Google Scholar 

  • Bordenave S., Jézéquel R., Fourçans A., Budzinski H., Merlin F.X., Fourel T., Goñi-Urriza M., Guyoneaud R., Grimaud R., Caumette P., Duran R (2004). Degradation of the “Erika” oil. Aquat. Living. Resour., 17: 261–267.

    Article  CAS  Google Scholar 

  • Brune D.C. (1995). Sulfur compounds as photosynthetic electron donors. In: Blankenship R.E., Madigan M.T., Bauer C.E., Eds, Anoxygenic photosynthetic bacteria, Kluwer, Dordrecht, The Netherlands, pp. 847–870.

    Google Scholar 

  • Clarke K.R., Warwick R.M. (2001). Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd edn, Primere Ltd., Plymouth Marine Laboratory, UK.

    Google Scholar 

  • Clayton R.K. (1963). Toward the isolation of a photochemical reaction center inRhodopseudomonas sphaeroides. Biochim. Biophys. Acta, 75: 312–323.

    Article  CAS  PubMed  Google Scholar 

  • Cooper D.E., Rands M.B., Woo C.P. (1975). Sulfide reduction in fellmongery effluent by red sulfur bacteria. J. Water Pollut. Control Fed., 47: 2088–2100.

    CAS  PubMed  Google Scholar 

  • Corson G.E., Nagashima K.V.P., Matsuura K., Sakuragi Y., Wettasinghe R., Qin H., Allen R., Knaff D.B. (1999). Genes encoding light harvesting and reaction center proteins fromChromatium vinosum. Photosyn. Res., 59: 39–52.

    Article  CAS  Google Scholar 

  • Curtis T.P., Mara D.D., Dixo N.G.H., Silva S.A. (1994). Light penetration in waste stabilisation ponds. Water. Res., 28: 1031–1038.

    Article  Google Scholar 

  • Deirdre C.R., Clipson N. (2008). Impact of sheep urine deposition and plant species on ammonia-oxidizing bacteria in upland grassland soil. Can. J. Microbiol., 54: 791–796.

    Article  CAS  Google Scholar 

  • Doering P.H. Chamberlain R.H. Haunert K.M. (2006). Chlorophyll a and its use as an Indicator of Eutrophication in the Caloosahatchee Estuary, Florida. Florida Scientist, 69: 51–72.

    CAS  Google Scholar 

  • Dunbar J., Ticknor L.O., Kuske C.R. (2000). Assessment of microbial diversity in four Southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl. Environ. Microbiol., 66: 2943–2950.

    Article  CAS  PubMed  Google Scholar 

  • Engebretson J.J., Moyer C.L. (2003). Fidelity of select restriction endonucleases in determining microbial diversity by terminal-restriction fragment length polymorphism. Appl. Environ. Microbiol., 69: 4823–4829.

    Article  CAS  PubMed  Google Scholar 

  • Fairchild G.W., Anderson J.N., Velinsky D.J. (2005). The trophic state “chain of relationships” in ponds: Does size matter? Hydrobiologia, 539: 35–46.

    Article  CAS  Google Scholar 

  • Fuchs B.M., Spring S., Teeling H., Quast C., Wulf J., Schattenhofer M., Yan S., Ferriera S.et al. (2007). Characterization of a marine gamma-proteobacterium capable of aerobic anoxygenic photosynthesis. Proc. Natl. Acad. Sci. USA, 104: 2891–2896.

    Article  CAS  PubMed  Google Scholar 

  • Fourçans A., De Oteyza T.G., Wieland A., Solé A., Diestra E., Van Bleijswijk J., Grimalt J.O., Kühl M., Esteve I., Muyzer G., Caumette P., Duran R. (2004). Characterization of functional bacterial groups in a hypersaline microbial mat community (Salins-de-Giraud, Camargue, France). FEMS. Microbiol. Ecol., 51: 55–70.

    Article  PubMed  CAS  Google Scholar 

  • Fulcher T.K., Beatty J.T., Jones M.R. (1998). Demonstration of the key role played by thePufX protein in the functional and structural organization of native and hybrid bacterial photosynthetic core complexes. J. Bacteriol., 180: 642–646.

    CAS  PubMed  Google Scholar 

  • Hansen T.A., van Gemerden H. (1972). Sulfide utilization by purple nonsulfur bacteria. Arch. Microbiol., 86: 49–56.

    CAS  Google Scholar 

  • Hewson I., Fuhrman J.A. (2004). Richness and diversity of bacterioplankton species along an estuarine gradient in Moreton Bay, Australia. Appl. Environ. Microbiol., 70: 3425–3433.

    Article  CAS  PubMed  Google Scholar 

  • Hoogwerf G.J., Jung D.O., Madigan T. (2003). Evidence for limited species diversity of bacteriochlorophyll b-containing purple nonsulfur anoxygenic phototrophs in freshwater habitats. FEMS. Microbiol. Lett., 218: 359–364.

    Article  Google Scholar 

  • Imhoff J.F. (1995). Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. In: Blakenship R.E., Madigan M.T., Bauer C.E., Eds, Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 1–15.

    Google Scholar 

  • Imhoff J.F. (2005). The anoxygenic phototrophic purple bacteria. In: Boone, Castenholz and Garrity Eds., Bergey’s Manual of Systematic Bacteriology, 2nd edn., Vol. 1, Springer-Verlag, New York, pp. 631–637.

    Google Scholar 

  • Kitts C.L. (2001). Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Curr. Iss. Intest. Microbiol., 2: 17–25.

    CAS  Google Scholar 

  • Kovach W.L. (1999). MVSP: A Multivariate Statistical Package for Windows, ver. 3.1., Wale, UK.

  • Legendre P., Legendre L. (1998). Numerical Ecology, Vol. 1, Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Llorens M., Saez J., Soler A. (1992). Influence of thermal stratification on the behaviour of a deep wastewater stabilization pond. Water. Res., 25: 567–577.

    Google Scholar 

  • Madigan M.T. (1988). Microbiology, physiology and ecology of phototrophic bacteria. In: Zehner A.J.B., Ed., Biology of Anaerobic Microorganisms. John Wiley & Sons, New York, N.Y, pp. 39–111.

    Google Scholar 

  • Madigan M.T. (1995). Microbiology of nitrogen fixation in photosynthetic bacteria. In: Blankenship R.E., Madigan M.T., Bauer C.E., Eds., Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 915–928.

    Google Scholar 

  • Madigan M.T. (2000). Bacterial habitats in extreme environments. In: Seckbach J., Ed., Journey to Diverse Microbiol Worlds. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 61–72.

    Google Scholar 

  • Madigan M.T., Martinko J.M., Parker J. (2003). Brock Biology of Microorganisms, 10th edn., Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Montesinos E., Ricardo G., Carlos A., Isabel E. (1983). Ecology and physiology of the competition for light betweenChlorobium limicola andChlorobium phaeobacteroides in natural habitats. Appl. Environ. Microbiol., 46: 1007–1016.

    PubMed  CAS  Google Scholar 

  • Okubo Y., Futamata H., Hiraishi A (2005). Distribution and capacity for utilization of lower fatty acids of phototrophic purple non sulphur bacteria in wastewater environments. Microbiol. Environ., 20: 135–143.

    Article  Google Scholar 

  • Okubo Y., Futamata H., Hiraishi A. (2006). Characterization of phototrophic purple nonsulfur bacteria forming colored microbial mats in a swine wastewater ditch. Appl. Environ. Microbiol., 72: 6225–6233.

    Article  CAS  PubMed  Google Scholar 

  • Pearson H.W. (1986). Estimation of chlorophyll a as a measure of algal biomass in waste stabilization ponds. Regional Seminar on Waste Stabilization Pond Research, CEPIS, Lima.

  • Pierson B.K., Olson J.M. (1987). Photosynthetic bacteria. In: Amez J., Ed., Elsevier Science Publishers, B.V. Amsterdam, The Netherlands, pp. 21–42.

    Google Scholar 

  • Pfennig N., Trüper H.G. (1974). The phototrophic bacteria, In: Buchanan R.E., Gibbons N.E., Eds, Bergey’s Manual of Determinative Bacteriology, 8th edn., Williams and Wilkins Co, Baltimore, pp. 24–64.

    Google Scholar 

  • Pfennig N. (1989). Ecology of phototrophic purple and green sulfur bacteria. In: Schlegel H.G., Bowien B., Eds, Autotrophic Bacteria. Springer-Verlag, New York, pp. 81–96.

    Google Scholar 

  • Ranchou-Peyruse A., Herbert R., Caumette P., Guyoneaud R. (2006). Comparison of cultivation-dependent and molecular methods for studying the diversity of anoxygenic purple phototrophs in sediments of an eutrophic brackish lagoon. Environ. Microbiol., 8: 1590–1599.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer M. (1998). Ecology of Shallow Lakes. Kluwer Academic Publishers, Boston, MA.

    Google Scholar 

  • Schwalbach M.S., Fuhrman J.A. (2005). Wide-ranging abundances of aerobic anoxygenic phototrophic bacteria in the world ocean revealed by epifluorescence microscopy and quantitative PCR. Limnol. Oceanogr., 50: 620–628.

    Article  CAS  Google Scholar 

  • Stomp M., Huisman J., Stal L.J., Matthijs H.C.P. (2007). Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J., 1: 271–282.

    CAS  PubMed  Google Scholar 

  • Stres B. (2006). The first decade of terminal restriction fragment length polymorphism (T-RFLP) in microbial ecology. Acta Agri. Sloven., 88: 65–73.

    CAS  Google Scholar 

  • Troussellier M., Legendre P., Baleux B. (1986). Modelling the evolution of bacterial densities in eutrophic ecosystem (sewage lagoons). Microbiol. Ecol., 12: 355–379.

    Article  Google Scholar 

  • Van Gemerden H., Beeftink H.H. (1983). Ecology of phototrophic bacteria. In: Ormerod J.G.,Ed., The Phototrophic Bacteria. University of California Press, Berkeley, pp. 146–185.

    Google Scholar 

  • Van Gemerden H. (1995). Ecology of phototrophic sulfur bacteria. In: Blankenship R.E. Madigan M.T., Bauer C.E., Eds, Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, Dordrecht, pp. 50–79.

    Google Scholar 

  • Wenke T.L., Vogt J.C. (1981). Temporal changes in a pink feedlot lagoon. Appl. Environ. Microbiol., 41: 381–385.

    CAS  PubMed  Google Scholar 

  • Young S.D., Schmidt T.M., Zahn J.A, Boyd E.S., De la Mora A., DiSpirito A.A. (2003). Role ofRhodobacter sp. strain ps9, a purple non-sulfur photosynthetic bacterium isolated from an anaerobic swine waste lagoon, in odour remediation. Appl. Environ. Microbiol., 69: 1710–1720.

    Article  CAS  Google Scholar 

  • Yurkov V.V., Beatty J.T. (1998). Aerobic anoxygenic phototrophic bacteria. Microbiol. Mol. Biol. Rev., 62: 695–724.

    CAS  PubMed  Google Scholar 

  • Yurkov V.V., Csotonyi J.T. (2003). Aerobic anoxygenic phototrophs and heavy metalloid reducers from extreme environments. In: Pandalai S.G., Ed., Recent Research Developments in Bacteriology, Vol 1, Transworld Research Network, Trivandrum, pp. 247–300.

    Google Scholar 

  • Yutin N., Suzuki M.T., Beja O. (2005). Novel primers reveal wider diversity among marine aerobic anoxygenic phototrophs. Appl. Environ. Microbiol., 71: 8958–8962.

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y.H., Chen X.H., Jiao N.Z. (2007). Genetic diversity assessment of anoxygenic photosynthetic bacteria by distance-based grouping analysis of pufM sequences. Lett. Appl. Microbiol., 45: 639–645.

    Article  CAS  PubMed  Google Scholar 

  • Zhu H., Ueda S., Asada Y., Miyake (2002). Hydrogen production as a novel process of wastewater treatment-studies on tofu wastewater with entrappedR. sphaeroides and mutagenesis. Int. J. Hydrogen Energ., 27: 1349–1357.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelaziz Belila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belila, A., Gtari, M., Ghrabi, A. et al. Purple anoxygenic phototrophic bacteria distribution in Tunisian wastewater stabilisation plant exhibiting red water phenomenon. Ann. Microbiol. 59, 399–408 (2009). https://doi.org/10.1007/BF03175122

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175122

Key words

Navigation