Skip to main content
Log in

Antimicrobial activity of volatile component and various extracts ofEnteromorpha linza (Linnaeus) J. Agardh from the coast of Izmir, Turkey

  • Physiology and Metabolism
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The methanol, dichloromethane, hexane, chloroform and volatile components ofEnteromorpha linza were testedin vitro for their antimicrobial activity against five Gram-positive, four Gram-negative bacteria andCandida albicans ATCC 10239. GC-MS analysis of the volatile components ofE. linza resulted in the identification of 35 compounds which constituted 84.76% of the total compounds. The volatile components ofE. linza consisted of n-tetratriacontane (8.45%), 1-heptadecanamine (6.65%) and docosane (6.46%) as major components. The methanol and chloroform extracts showed more potent antimicrobial activity than hexane and dichloromethane extracts. The volatile oils of these algae did not remarkably inhibit the growth of tested microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams R.P. (1995). Identification of Essential Oil components by Gas Chromatography/ Mass Spectroscopy. Allured Publishing Corporation Carol Streem, Illinois.

    Google Scholar 

  • Akakabe Y., Matsui K., Kajiwara T. (2003). 2,4-Decadienals are produced via (R)-11-HPITE from arachidonic acid in marine green alga Ulva conglobata. Bioorgan. Med. Chem., 11 (17): 3607–3609.

    Article  CAS  Google Scholar 

  • Akakabe Y., Washizu K., Matsui K., Kajiwara T. (2005). Concise synthesis of (8Z,11Z,14Z)-8,11,14-heptadecatrienal, (7Z,10Z, 13Z)-7,10,13-hexadecatrienal, and (8Z,11Z)-8,11-heptadecadienal, components of the essential oil of marine green alga Ulva pertusa. Biosci. Biotech. Bioch., 69 (7): 1348–1352.

    Article  CAS  Google Scholar 

  • Awad N.E. (1998). Phytochemical and biological studies on the green algaEnteromorpha intestinalis. Egypt. J. Pharm. Sci., 39: 303–322.

    Google Scholar 

  • Awad N.E. (2000). Biologically active steroid from green algaUlva lactuca. Phytother. Res., 14: 641–643.

    Article  CAS  PubMed  Google Scholar 

  • Ballantine D.L., Gerwick WH., Velez S. M., Alexander E., Guevara P. (1987). Antibiotic activity of lipid-soluble extracts from Caribbean marine algae. Hydrobiologia, 151/152: 463–469.

    Article  Google Scholar 

  • Bradshaw L.J. (1992). Laboratory Microbiology. 4th edn., USA.

  • Callow M.E. (1996). Ship-fouling: the problem and method of control. Biodeterioration Abstr. 10: 411–421.

    Google Scholar 

  • Cannell R.J.P. (1993). Algae as a source of biologically-active products. Pest. Sci., 39: 147–153.

    Article  CAS  Google Scholar 

  • Collins C.M., Lyne P.M. (1989). Microbiological Methods. Butterworths and Co. Ltd., London.

    Google Scholar 

  • Febles C.I., Arias A., Gil-Rodriguez M.C., Hardisson A., Sierra Lopez A. (1995).In vitro study of antimicrobial activity in algae (Chlorophyta, Phaeophyta and Rhodophyta) collected from the coast of Tenerife (in Spanish). Anuario del Instituto de Estudios Canarios, 34: 181–192.

    Google Scholar 

  • Gonzalez del Val A., Platas G., Basilio A., Cabello A., Gorrochategui J., Suay I., Vicente F., Portillo E., Jimenez del Rio M., Reina G.G., Pelaez F. (2001). Screening of antimicrobial activities in red, green and brown macroalgae from Gran Canaria (Canary Islands, Spain). Int. Microbiol., 4 (1): 35–40.

    Google Scholar 

  • Hayden H.S., Blomster J., Maggs C.A., Silva P.C., Stanhope M.J., Waaland J.R. (2003). Linnaeus was right all along:Ulva and Enteromorpha are not distinct genera. Eur. J. Phycol., 38: 277–294.

    Article  Google Scholar 

  • Hudson J.B., Kim J.H., Lee M.K., DeWreede R.E., Hong Y.K. (1998). Antiviral compounds in extracts of Korean seaweeds: Evidence for multiple activities. J. Appl. Phycol., 10(5): 427–434.

    Article  Google Scholar 

  • Khan N.H., Rahman M., Kamal Nur-E. (1988). Antibacterial activity ofEuphorbia thymifolia Linn. Indian J. Med. Res., 87: 395–397.

    CAS  PubMed  Google Scholar 

  • Konig G.M., Wright A.G., Sticher O., Angerhofer C.K., Pezzuto J.M. (1994). Biological activities of selected marine natural products. Planta Med., 60: 532–537.

    Article  CAS  PubMed  Google Scholar 

  • Lustigman B., Lee L.H, Thees N., Masucci J. (1992). Production of antimicrobial substances by macroalgae of the New York/New Jersey coast, USA. Bull. Environ. Contam. Tox., 49: 743–749.

    Article  CAS  Google Scholar 

  • Malea P., Haritonidis S. (1999). Metal contentin Enteromorpha linza (Linnaeus) in Thermaikos Gulf (Greece). Hydrobiologia, 394: 103–112.

    Article  CAS  Google Scholar 

  • Moreau J., Pesando D., Bernard P., Caram B., Pionnat J.C. (1988). Seasonal variations in the production of antifungal substances by some Dictyotales (brown algae) from the French Mediterranean coast. Hydrobiologia, 162: 157–162.

    Article  CAS  Google Scholar 

  • Nisizwa K., Noda H., Kikuchi R., Watanabe T. (1987). The main seaweed foods in Japan. Hydrobiologia, 151/152: 5–29.

    Article  Google Scholar 

  • Ozdemir G., Karabay N.U., Conk-Dalay M., PazarbasI B. (2004). Antibacterial activity of volatile component and various extracts ofSpirulina platensis. Phytother. Res., 18: 754–757.

    Article  CAS  PubMed  Google Scholar 

  • Phongpaichit S., Subhadhirasakul S., Wattanapiromsakul C. (2005). Antifungal activities of extracts from Thai medicinal plants against opportunistic fungal pathogens associated with AIDS patients. Mycoses, 48: 333–338.

    Article  PubMed  Google Scholar 

  • Reichelt J.L., Borowitzka M.A.(1984). Antimicrobial activity from marine algae: results of a large-scale screening program. Hydrobiologia, 116/117: 158–167.

    Article  Google Scholar 

  • Rodrigues E., Supriya T., Naik C.G. (2004). Antimicrobial activity of marine organisms collected off the coast of South East India. J. Exp. Mar. Biol. Ecol., 309: 121–127.

    Article  Google Scholar 

  • Saleh M.M., Awad N.E., Abou-Zeid A.H., Anderson K., Glombitza K.W. (1993). 3rd International Congress on Amino acids, Peptides and Analoges, Vienna, 23-27 August, pp. 152.

  • Sastry V.M.V.S., Rao G.R.K. (1994). Antibacterial substances from marine algae: successive extraction using benzene, chloroform and methanol. Bot. Mar., 37: 357–360.

    Article  CAS  Google Scholar 

  • Tellez M.R., Schrader K.K., Kobaisy M. (2001). Volatile components of the cyanobacteriumOscillatoria perornata (Skuja). J. Agr. Food Chem., 49 (12): 5989–5992.

    Article  CAS  Google Scholar 

  • Vlachos V., Critchley A.T., von Holy A. (1996). Establishment of a protocol for testing antimicrobial activity in southern African macroalgae. Microbios, 88: 115–123.

    CAS  PubMed  Google Scholar 

  • Yamamoto Y., Akakabe Y., Matsui K., Shimizu H., Kajiwara T. (2001). Neodictyoprolenol and dictyoprolenol, the possible biosynthetic intermediates of dictyopterenes, in the Japanese brown algaeDictyopteris. Z. Naturforsch. C., 56(1-2): 6–12.

    CAS  PubMed  Google Scholar 

  • Zamenarska Z., Dimitrova-Konaklieva S., Stefanov K., Najdenski H., Tzvetkova I., Popov S. (2002). Comparative study of the volatile compounds from some Black Sea brown algae. Bot. Mar., 45: 502–509.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N.Ulku Karabay-Yavaşsoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukatar, A., Karabay-Yavaşsoglu, N., Ozdemir, G. et al. Antimicrobial activity of volatile component and various extracts ofEnteromorpha linza (Linnaeus) J. Agardh from the coast of Izmir, Turkey. Ann. Microbiol. 56, 275–279 (2006). https://doi.org/10.1007/BF03175018

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175018

Key words

Navigation