Skip to main content
Log in

Cloning of D-glucose dehydrogenase with a narrow substrate specificity fromBacillus thuringiensis M15

  • Industrial Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

We have cloned an ORF ofBacillus thuringiensis M15, which encodes a protein sharing high similarity with D-glucose dehydrogenase. A high-expression plasmid (pBtGDH) for the ORF was constructed.Escherichia coli JM 109 transformed with pBtGDH exhibited D-glucose dehydrogenase activity, and the enzyme was purified by 3 chromatographic steps to homogeneity with 6.9 fold and a final yield of 13%. The purified enzyme has highly narrow substrate specificity for glucose and 2-deoxy-D-glucose and showed no activity with any other sugars we tested. The properties of the purified enzyme were similar to those of the D-glucose dehydrogenase (BtGDH) that is mainly produced inB. thuringiensis M15. These results show that the cloned gene encodes BtGDH, as we previously reported. This is the first report to determine the sequence of the enzyme with narrow substrate specificity. BtGDH shows 89% sequence similarity with D-glucose dehydrogenase fromBacillus megaterium IWG3 (GDH-IWG3), which has broad substrate specificity. A comparative analysis between BtGDH and GDH-IWG3 will reveal the differences between them and show the narrow specific activity of BtGDH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baik S.H., Michel F., Aghajari N., Haser R., Harayama S. (2005). Cooperative effect of two surface amino acid mutations (Q252L and E170K) in glucose dehydrogenase fromBacillus megaterium IWG3 on stabilization of its oligomeric state.Appl. Environ. Microbiol., 71 (6): 3285–3293.

    Article  CAS  PubMed  Google Scholar 

  • Boontim N., Yoshimune K., Lumyong S., Moriguchi M. (2004a). Production of D-glucose dehydrogenase for the determination of D-glucose. Ann. Microbiol., 54 (1): 87–93.

    CAS  Google Scholar 

  • Boontim N., Yoshimune K., Lumyong S., Moriguchi M. (2004b). Purification and characterization of D-glucose dehydrogenase fromBacillus thuringiensis M15. Ann. Microbiol., 54 (4): 481–492.

    CAS  Google Scholar 

  • Cleton-Jansen A.M., Goosen N., Wenzel T.J., van de Putte P. (1988) Cloning of the gene encoding quinoprotein glucose dehydrogenase fromAcinetobacter calcoaceticus: Evidence for the presence of a second enzyme. J. Bacteriol., 170 (5): 2121–2125.

    CAS  PubMed  Google Scholar 

  • Cozier G.E., Anthony C. (1995). Structure of the quinoprotein glucose dehydrogenase ofEscherichia coli modeled on that of methanol dehydrogenase fromMethylobacterium extorquens. Biochem. J., 312: 679–685.

    CAS  PubMed  Google Scholar 

  • Laemmli U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. (1951). Protein measurement with Folin phenol reagent. J. Biol. Chem., 193: 265–275.

    CAS  PubMed  Google Scholar 

  • Makino Y., Negoro S., Urabe I., Okada H. (1989). Stability-increasing mutants of glucose dehydrogenase fromBacillus megaterium IWG3. J. Biol. Chem., 264 (11): 6381–6385.

    CAS  PubMed  Google Scholar 

  • Mehmet S., Quan G., Thomas S., Goldsmith D. (2001). Important causes of hypoglycemia in patients with diabetes on peritoneal dialysis. Diabet. Med., 18 (8): 679–682.

    Article  CAS  PubMed  Google Scholar 

  • Mitamura T., Urabe I., Okada H. (1989). Enzymatic properties of isoenzymes and variants of glucose dehydrogenase from Bacillus megaterium. Eur. J. Biochem., 186 (1–2): 389–393.

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J., Fritsch E.F., Maniatis T., Eds. (1989). Molecular Cloning, A Laboratory Manual, 2nd edn., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Siebers B., Wendisch V.F., Hensel R. (1997). Carbohydrate metabolism inThermoproteus tenax: In vivo utilization of the nonphosphorylative Entner-Doudoroff pathway and characterization of its first enzyme, glucose dehydrogenase. Arch. Microbiol., 168 (2): 120–127.

    Article  CAS  PubMed  Google Scholar 

  • Smith L.D., Budgen N., Bungard S.J., Danson M.J., Hough D.W. (1989). Purification and characterization of glucose dehydrogenase from the thermoacidophilic archaebacteriumThermoplasma acidophilum. Biochem. J., 261 (3): 973–977.

    CAS  PubMed  Google Scholar 

  • Strecker H.J., Korkes S. (1952). Glucose dehydrogenase. J. Biol. Chem., 196 (2): 769–784.

    CAS  PubMed  Google Scholar 

  • Tang Z., Louie R.E., Lee J.H., Lee D.M., Miller E.E., Kost G.J. (2001). Oxygen effects on glucose meter measurements with glucose dehydrogenase and oxidase base test strips for pointofcare testing. Crit. Care Med., 29 (5): 1062–1070.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K., Kurisu G., Kusunoki M., Tabata S., Urabe I., Osaki S. (2001). Crystal structure of glucose dehydrogenase fromBacillus megaterium IWG3 at 1.7 A resolution. J. Biochem. 129 (2): 303–312.

    CAS  PubMed  Google Scholar 

  • Yoshida H., Kojima K., Witarto A.B., Sode K. (1999). Engineering a chimeric pyrroloquinoline quinine glucose dehydrogenase: Improvement of EDTA tolerance, thermal stability, and substrate specificity. Protein Eng. 12 (1): 63–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitaya Boontim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boontim, N., Yoshimune, K., Lumyong, S. et al. Cloning of D-glucose dehydrogenase with a narrow substrate specificity fromBacillus thuringiensis M15. Ann. Microbiol. 56, 237–240 (2006). https://doi.org/10.1007/BF03175011

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175011

Key words

Navigation