Skip to main content
Log in

Antibacterial activities of marine epibiotic bacteria isolated from brown algae of Japan

  • Physiology and Metabolism
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

One hundred and sixteen epibiotic bacteria were isolated from the surface of nine species of brown algaeSargassum serratifolium, Sargassum fusiforme, Sargassum filicinum, Padina arborescens, Undaria pinnatifida, Petalonia fascia, Colpomenia sinuosa, Scytosiphon lomentaria andEcklonia cava which were collected at Awaji Island, Japan. Primary screening results using disc-diffusion assay revealed that, among the bacteria isolated 20% of epibiotic bacteria exhibited antibacterial activity. Among them, 10 bacteria which showed high antibacterial activity were further studied for their ability against (i) a set of fouling bacteria isolated from marine natural biofilm, (ii) some luminescentVibrio andPhotobacterium species and (iii) a panel of pathogenic bacteria. In general, inhibitory activities were high or moderate against fouling bacteria,Vibrio andPhotobacterium species, while they were found to be low against pathogenic bacteria tested. The phylogenetic analysis using 16S rRNA sequencing revealed that all of the bacteria with high antibacterial activity showed a close affiliation with genusBacillus. This result suggested that the genusBacillus is efficient producers of of antibacterial compounds and these epibiotic bacteria isolated are highly successful colonizers on macroalgal surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong E., Yan L., Boyd K.G., Wright, P.C., Burgess J.G. (2001). The symbiotic role of marine microbes on living surfaces. Hydrobiologia, 461: 37–40.

    Article  Google Scholar 

  • Bauer A.W., Kirby W.M.M., Sherries J.C., Turck M. (1966). Antibiotic susceptibility testing by a standardized single disc method. Amer. J. Clin. Pathol., 45: 493–496.

    CAS  Google Scholar 

  • Bizani D., Brandelli A. (2002). Characterization of a bacteriocin produced by a newly isolatedBacillus sp. Strain 8 A. J. Appl. Microbiol., 93: 512–519.

    Article  CAS  PubMed  Google Scholar 

  • Boyd K.G., Adams D.R., Burgess J.G. (1999). Antibacterial and repellent activities of marine bacteria associated with algal surfaces. Biofouling, 14: 227–236.

    Article  Google Scholar 

  • Burgess, J.G., Jordan E.M., Bregu M., Mearns-Spragg A., Boyd K.G., (1999). Microbial antagonism: a neglected avenue of natural products research. J. Biotechnol., 70: 27–32.

    Article  CAS  PubMed  Google Scholar 

  • Burgess J.G., Boyd K.G., Armstrong E., Jiang Z., Yan L. Berggren M., May U., Pisacane T., Granmo A., Adams D.R. (2003). The development of a marine natural product-based antifouling paint. Biofouling, 19: 197–205.

    Article  CAS  PubMed  Google Scholar 

  • Clare A.S. (1996). Marine natural product antifoulants: status and potential. Biofouling, 9: 211–229.

    Article  CAS  Google Scholar 

  • de Nys R., Steinberg P.D., Willemsen P., Dworjanyn S.A., Gabelish C.L., King R.J. (1994). Broad spectrum effects of secondary metabolites from the red algaDelisea pulchra in antifouling assays. Biofouling, 8: 250–271.

    Google Scholar 

  • Egan S., Thomas T., Holmstrom C., Kjelleberg S. (2000). Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine algaUlva lactuca. Environ. Microbiol., 2: 343–347.

    Article  CAS  PubMed  Google Scholar 

  • Egan S., James S., Holmstrom C., Kjelleberg S. (2001). Inhibition of algal spore germination by the marine bacteriumPseudoalteromonas tunicata. FEMS Microbiol. Ecol., 35: 67–73.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J. (1985). Confidence limits on phylogenies: an approach using bootstrap. Evolution, 39: 783–791.

    Article  Google Scholar 

  • Hathout Y., Demirev P.A., Ho Y.P., Bundy J.L., Ryzhou V., Sapp L., Stutler J., Jackman J., Fenselau C. (1999). Identification ofBacillus spores by matrix-assisted laser desorption ionization mass spectrometry. Appl. Environ. Microbiol., 65: 4313–4319.

    CAS  PubMed  Google Scholar 

  • Hentschel U., Schmid M., Wagner M., Fieseler L., Gernert C., Hacker J. (2001). Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean spongesAplysina aerophoba andAplysina cavernicola. FEMS Microbiol. Ecol., 35: 305–312.

    Article  CAS  PubMed  Google Scholar 

  • Holmstrom C., James S., Egan S., Kjelleberg S. (1996). Inhibition of common fouling organisms by pigmented marine bacterial isolates. Biofouling, 10: 251–259.

    Article  Google Scholar 

  • Holmstrom C., Kjelleberg S. (1999). MarinePseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol. Ecol., 30: 285–293.

    CAS  PubMed  Google Scholar 

  • Imamura N., Nishijima M., Takadera T., Adachi K. (1997). New anticancer antibiotics pelagiomicins, produced by a new marine bacteriumPelagiobacter variabilis. J. Antibiot., 50: 8–12.

    CAS  PubMed  Google Scholar 

  • Ivanova E.P., Vysotskii M.V., Svetashev V.I., Nedashkovskaya O.I., Gorshkova N.M., Michailov V.V., Yumoto N., Shigeri Y., Taguchi T., Yoshikawa S. (1999). Characterization ofBacillus strains of marine origin. Int. Microbiol., 2: 267–271.

    CAS  PubMed  Google Scholar 

  • Lebbadi M., Galvez A., Maqueda M., Martinez-Bueno M. Valdivia E. (1994). Fungicin M4: a narrow spectrum peptide antibiotic fromBacillus licheniformis M-4. J. Appl. Bacteriol., 77: 49–53.

    CAS  PubMed  Google Scholar 

  • Lemos M.L., Toranzo A.E., Barja L.J. (1986). Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microb. Ecol., 11: 149–163.

    Article  Google Scholar 

  • Li C., Zheng J., Li X., Zhao X., Qu G., Jiang G., Fu Y. (2003) The inhibitory effect of extracts fromGalla chinensis on marine fouling bacteria. Zhong Yao Cai., 26: 106–109.

    PubMed  Google Scholar 

  • Mammadhan, K., Sasaki H., Nakajima K., Nagata K., Nagata S. (2005). Inhibitory activities of surface associated bacteria isolated from the marine spongePseudoceratina purpurea. Microbes Environ., 20: 178–185.

    Article  Google Scholar 

  • McCaffrey E.J., Endean R. (1985). Antimicrobial activity of tropical and subtropical sponges. Mar. Biol., 89: 1–8.

    Article  Google Scholar 

  • Nagata S. (1988). Influence of salts and pH on the growth as well as NADH oxidase of the halotolerant bacterium A505. Arch. Microbiol., 150: 302–308.

    Article  CAS  Google Scholar 

  • Patel P., Callow M.E., Joint I., Callow J.A. (2003). Specificity in the settlement modifying response of bacterial biofilms towards zoospores of the marine algaEnteromorpha. Environ. Microbiol., 5: 338–349.

    Article  CAS  PubMed  Google Scholar 

  • Siefert J.L., Larios-Sanz M., Nakamura L.K., Slepecky R.A., Paul J.H., Moore E.R., Fox G.E., Jurtshuk P. Jr. (2000). Phylogeny of marineBacillus isolates from the Gulf of Mexico. Curr. Microbiol., 41: 84–88.

    Article  CAS  PubMed  Google Scholar 

  • Slattery M., Rajbhandari I., Wesson K. (2001). Competition mediated antibiotic induction in the marine bacteriumStreptomyces tenjimariensis. Microb. Ecol., 41: 90–96.

    CAS  PubMed  Google Scholar 

  • Stabb E.V., Jacobson L.M., Handelsman J. (1994). Zwittermicin Aproducing strains ofBacillus cereus from diverse soils. Appl. Environ. Microbiol., 60: 4404–4412.

    CAS  PubMed  Google Scholar 

  • Swofford D.L. (1999). PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.03ba. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Thakur N.L., Anil A.C. (2000). Antibacterial activity of the spongeIrcinia ramosa: importance of its surface-associated bacteria. J. Chem. Ecol., 26: 57–72.

    Article  CAS  Google Scholar 

  • Thompson J.D., Higgins D.G., Gibson T.J. (1994). CLUSTAL W-improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673–4680.

    Article  CAS  PubMed  Google Scholar 

  • Trischman J.A., Jensen P.R., Fenical W. (1994). Halobacillin: a cytotoxic cyclic acylpeptide of the iturin class produced by a marineBacillus. Tetrahedron Lett., 35: 5571–5574.

    Article  CAS  Google Scholar 

  • Zheng L., Han X., Chen H., Lin W., Yan X. (2005). Marine bacteria associated with marine macroorganisms: the potential antimicrobial resources. Ann. Microbiol., 55: 119–124.

    CAS  Google Scholar 

  • Zuber P., Nakano M.M., Marahiel M.A. (1993). Peptide antibiotics. In: Soneshein A.L., Hoch J.A., Losick R., Eds,Bacillus subtilis and other Gram-Positive Bacteria. Amer. Soc. Microbiol., Washington, D.C., pp. 897–916.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manmadhan Kanagasabhapathy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanagasabhapathy, M., Sasaki, H., Haldar, S. et al. Antibacterial activities of marine epibiotic bacteria isolated from brown algae of Japan. Ann. Microbiol. 56, 167–173 (2006). https://doi.org/10.1007/BF03175000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175000

Key words

Navigation