Advertisement

Journal of Physiology and Biochemistry

, Volume 64, Issue 4, pp 357–375 | Cite as

Vitamin C transporters

  • C. I. RivasEmail author
  • F. A. Zúñiga
  • A. Salas-Burgos
  • L. Mardones
  • V. Ormazabal
  • J. C. Vera
Minireviews

Abstract

Vitamin C is a wide spectrum antioxidant essential for humans, which are unable to synthesize the vitamin and must obtain it from dietary sources. There are two biologically important forms of vitamin C, the reduced form, ascorbic acid, and the oxidized form, dehydroascorbic acid. Vitamin C exerts most of its biological functions intracellularly and is acquired by cells with the participation of specific membrane transporters. This is a central issue because even in those species capable of synthesizing vitamin C, synthesis is restricted to the liver (and pancreas) from which is distributed to the organism. Most cells express two different transproter systems for vitamin C; a transporter system with absolute specificity for ascorbic acid and a second system that shows absolute specificity for dehydroascorbic acid. The dehydroascorbic acid transporters are members of the GLUT family of facilitative glucose transporters, of which at least three isoforms, GLUT1, GLUT3 and GLUT4, are dehydroascorbic acid transporters. Ascorbic acid is transported by the SVCT family of sodium-coupled transporters, with two isoforms molecularly cloned, the transporters SVCT1 y SVCT2, that show different functional properties and differential cell and tissue expression. In humans, the maintenance of a low daily requirement of vitamin C is attained through an efficient system for the recycling of the vitamin involving the two families of vitamin C transporters.

Key words

Vitamin C Ascorbic acid Dehydroascorbic acid SVCT GLUT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramson, J., Kaback, H.R., & Iwata, S. (2004): Structural comparison of lactose permease and the glycerol-3-phosphate antiporter: members of the major facilitator superfamily.Curr Opin Struct Biol,14, 413–419.PubMedGoogle Scholar
  2. 2.
    Abramson, J., Smirnova, I., Kasho, V., Verner, G., Kaback, H.R., & Iwata, S. (2003): Structure and mechanism of the lactose permease of Escherichia coli.Science,301, 610–615.PubMedGoogle Scholar
  3. 3.
    Agus, D.B., Gambhir, S.S., Pardridge, W.M., Spielholz, C., Baselga, J., Vera, J. C., & Golde, D.W. (1997): Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters.J Clin Invest,100, 2842–2848.PubMedGoogle Scholar
  4. 4.
    Agus, D.B., Vera, J.C., & Golde, D.W. (1999): Stromal cell oxidation: a mechanism by which tumors obtain vitamin C.Cancer Res,59, 4555–4558.PubMedGoogle Scholar
  5. 5.
    Alvarez, J., Lee, D.C., Baldwin, S.A., & Chapman, D. (1987): Fourier transform infrared spectroscopic study of the structure and conformational changes of the human erythrocyte glucose transporter.J Biol Chem,262, 3502–3509.PubMedGoogle Scholar
  6. 6.
    Angulo, C., Rauch, M.C., Droppelmann, A., Reyes, A.M., Slebe, J.C., Delgado-Lopez, F., Guaiquil, V.H., Vera, J.C., & Concha, II (1998): Hexose transporter expression and function in mammalian spermatozoa: cellular localization and transport of hexoses and vitamin C.J Cell Biochem,71, 189–203.PubMedGoogle Scholar
  7. 7.
    Arbuckle, M.I., Kane, S., Porter, L.M., Seatter, M.J., & Gould, G.W. (1996): Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity,Biochemistry,35, 16519–16527.PubMedGoogle Scholar
  8. 8.
    Asano, T., Katagiri, H., Takata, K., Lin, J.L., Ishihara, H., Inukai, K., Tsukuda, K., Kikuchi, M., Hirano, H., Yazaki, Y., &et al. (1991): The role of N-glycosylation of GLUT1 for glucose transport activity.J Biol Chem,266, 24632–24636.PubMedGoogle Scholar
  9. 9.
    Augustin, R., Carayannopoulos, M.O., Dowd, L.O., Phay, J.E., Moley, J.F., & Moley, K.H. (2004): Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking.J Biol Chem,279, 16229–16236.PubMedGoogle Scholar
  10. 10.
    Axelrod, J.D. & Pilch, P.F. (1983): Unique cytochalasin B binding characteristics of the hepatic glucose carrier.Biochemistry,22, 2222–2227.PubMedGoogle Scholar
  11. 11.
    Baldwin, S.A., Barros, L.F., Griffiths, M., Ingram, J., Robbins, E.C., Streets, A.J., & Saklatvala, J. (1997): Regulation of GLUT1 in response to cellular stress.Biochem Soc Trans,25, 954–958.PubMedGoogle Scholar
  12. 12.
    Basketter, D.A. & Widdas, W.F. (1978): Asymmetry of the hexose transfer system in human erythrocytes. Comparison of the effects of cytochalasin B, phloretin and maltose as competitive inhibitors.J Physiol,278, 389–401.PubMedGoogle Scholar
  13. 13.
    Berger, U.V., Lu, X.C., Liu, W., Tang, Z., Slusher, B.S., & Hediger, M.A. (2003): Effect of middle cerebral artery occlusion on mRNA expression for the sodium-coupled vitamin C transporter SVCT2 in rat brain.J Neurochem,86, 896–906.PubMedGoogle Scholar
  14. 14.
    Biondi, C., Pavan, B., Dalpiaz, A., Medici, S., Lunghi, L., & Vesce, F. (2007): Expression and characterization of vitamin C transporter in the human trophoblast cell line HTR-8/S Vneo: effect of steroids, flavonoids and NSAIDs.Mol Hum Reprod,13, 77–83.PubMedGoogle Scholar
  15. 15.
    Burant, C.F., Takeda, J., Brot-Laroche, E., Bell, G. I., & Davidson, N. O. (1992): Fructose transporter in human spermatozoa and small intestine is GLUT5.J Biol Chem,267, 14523–14526.PubMedGoogle Scholar
  16. 16.
    Capellmann, M., Becka, M., & Bolt, H.M. (1994): A note on distribution of human plasma levels of ascorbic and dehydroascorbic acid.J Physiol Pharmacol,45, 183–187.PubMedGoogle Scholar
  17. 17.
    Capilla, E., Suzuki, N., Pessin, J.E., & Hou, J.C. (2007): The glucose transporter 4 FQQI motif is necessary for Akt substrate of 160-kilodalton-dependent plasma membrane translocation but not Golgi-localized (gamma)-ear-containing Arf-binding protein-dependent entry into the insulin-responsive storage compartment.Mol Endocrinol,21, 3087–3099.PubMedGoogle Scholar
  18. 18.
    Carr, A. & Frei, B. (1999): Does vitamin C act as a pro-oxidant under physiological conditions?Faseb J,13, 1007–1024.PubMedGoogle Scholar
  19. 19.
    Carr, A.C. & Frei, B. (1999): Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans.Am J Clin Nutr,69, 1086–1107.PubMedGoogle Scholar
  20. 20.
    Carruthers, A. & Helgerson, A.L. (1989): The human erythrocyte sugar transporter is also a nucleotide binding protein.Biochemistry,28, 8337–8346.PubMedGoogle Scholar
  21. 21.
    Chatterjee, I.B. (1973): Evolution and the biosynthesis of ascorbic acid.Science,182, 1271–1272.PubMedGoogle Scholar
  22. 22.
    Chatterjee, I.B. & McKee, R.W. (1964): Biosynthesis of L-Ascorbic Acid in Liver Microsomes from Mice Bearing Transplanted Tumors.Proc Soc Exp Biol Med,117, 304–306.PubMedGoogle Scholar
  23. 23.
    Coassin, M., Tomasi, A., Vannini, V., & Ursini, F. (1991): Enzymatic recycling of oxidized ascorbate in pig heart: one-electron vs two-electron pathway.Arch Biochem Biophys,290, 458–462.PubMedGoogle Scholar
  24. 24.
    Concha, II, Velasquez, F.V., Martínez, J.M., Angulo, C., Droppelmann, A., Reyes, A.M., Slebe, J.C., Vera, J.C., & Golde, D.W. (1997): Human erythrocytes express GLUT5 and transport fructose.Blood,89, 4190–4195.PubMedGoogle Scholar
  25. 25.
    Corpe, C.P., Bovelander, F.J., Munoz, C.M., Hoekstra, J.H., Simpson, I.A., Kwon, O., Levine, M., & Burant, C.F. (2002): Cloning and functional characterization of the mouse fructose transporter, GLUT5.Biochim Biophys Acta,1576, 191–197.PubMedGoogle Scholar
  26. 26.
    Coucke, P.J., Willaert, A., Wessels, M.W., Callewaert, B., Zoppi, N., De Backer, J., Fox, J.E., Mancini, G.M., Kambouris, M., Gardella, R., Facchetti, F., Willems, P.J., Forsyth, R., Dietz, H.C., Barlati, S., Colombi, M., Loeys, B., & De Paepe, A. (2006): Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome.Nat Genet,38, 452–457.PubMedGoogle Scholar
  27. 27.
    Daruwala, R., Song, J., Koh, W.S., Rumsey, S.C., & Levine, M. (1999): Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2.FEBS Lett,460, 480–484.PubMedGoogle Scholar
  28. 28.
    Dawson, P.A., Mychaleckyj, J.C., Fossey, S.C., Mihic, S.J., Craddock, A. L., & Bowden, D. W. (2001): Sequence and functional analysis of GLUT10: a glucose transporter in the Type 2 diabetes-linked region of chromosome 20q12-13.1.Mol Genet Metab,74, 186–199.PubMedGoogle Scholar
  29. 29.
    Doege, H., Bocianski, A., Scheepers, A., Axer, H., Eckel, J., Joost, H. G., & Schurmann, A. (2001): Characterization of human glucose transporter (GLUT) 11 (encoded by SLC2A11), a novel sugar-transport facilitator specifically expressed in heart and skeletal muscle.Biochem J,359, 443–449.PubMedGoogle Scholar
  30. 30.
    Drera, B., Guala, A., Zoppi, N., Gardella, R., Franceschini, P., Barlati, S., & Colombi, M. (2007). Two novel SLC2A10/GLUT10 mutations in a patient with arterial tortuosity syndrome.Am J Med Genet A,143, 216–218.PubMedGoogle Scholar
  31. 31.
    Eck, P., Erichsen, H.C., Taylor, J.G., Yeager, M., Hughes, A.L., Levine, M., & Chanock, S. (2004): Comparison of the genomic structure and variation in the two human sodium-dependent vitamin C transporters, SLC23A1 and SLC23A2.Hum Genet,115, 285–294.PubMedGoogle Scholar
  32. 32.
    Erichsen, H.C., Engel, S.A., Eck, P.K., Welch, R., Yeager, M., Levine, M., Siega-Riz, A.M., Olshan, A. F., & Chanock, S.J. (2006): Genetic variation in the sodium-dependent vitamin C transporters, SLC23A1, and SLC23A2 and risk for preterm delivery.Am J Epidemiol,163, 245–254.PubMedGoogle Scholar
  33. 33.
    Faaland, C.A., Race, J.E., Ricken, G., Warner, F.J., Williams, W.J., & Holtzman, E.J. (1998): Molecular characterization of two novel transporters from human and mouse kidney and from LLC-PK1 cells reveals a novel conserved family that is homologous to bacterial and Aspergillus nucleobase transporters.Biochim Biophys Acta,1442, 353–360.PubMedGoogle Scholar
  34. 34.
    Fujita, I., Hirano, J., Itoh, N., Nakanishi, T., & Tanaka, K. (2001): Dexamethasone induces sodium-dependant vitamin C transporter in a mouse osteoblastic cell line MC3T3-E1.Br J Nutr,86, 145–149.PubMedGoogle Scholar
  35. 35.
    García, J.C., Strube, M., Leingang, K., Keller, K., & Mueckler, M. M. (1992): Amino acid substitutions at tryptophan 388 and tryptophan 412 of the HepG2 (Glut1) glucose transporter inhibit transport activity and targeting to the plasma membrane in Xenopus oocytes.J Biol Chem,267, 7770–7776.PubMedGoogle Scholar
  36. 36.
    Godoy, A., Ormazabal, V., Moraga-Cid, G., Zuniga, F.A., Sotomayor, P., Barra, V., Vasquez, O., Montecinos, V., Mardones, L., Guzman, C., Villagran, M., Aguayo, L.G., Onate, S.A., Reyes, A.M., Carcamo, J.G., Rivas, C.I., & Vera, J.C. (2007). Mechanistic insights and functional determinants of the transport cycle of the ascorbic acid transporter SVCT2. Activation by sodium and absolute dependence on bivalent cations.J Biol Chem,282, 615–624.PubMedGoogle Scholar
  37. 37.
    Gordon, N., & Newton, R.W. (2003): Glucose transporter typel (GLUT-1) deficiency.Brain Dev,25, 477–480.PubMedGoogle Scholar
  38. 38.
    Gorovits, N., Cui, L., Busik, J.V., Ranalletta, M., Hauguel de-Mouzon, S., & Charron, M.J. (2003): Regulation of hepatic GLUT8 expression in normal and diabetic models.Endocrinology,144, 1703–1711.PubMedGoogle Scholar
  39. 39.
    Gould, G. W., & Holman, G.D. (1993): The glucose transporter family: structure, function and tissue-specific expression.Biochem. J.,295, 329–341.PubMedGoogle Scholar
  40. 40.
    Gould, G.W., Thomas, H.M., Jess, T.J., & Bell, G. I. (1991): Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms.Biochemistry,30, 5139–5145.PubMedGoogle Scholar
  41. 41.
    Gournas, C., Papageorgiou, I., & Diallinas, G. (2008): The nucleobase-ascorbate transporter (NAT) family: genomics, evolution, structure-function relationships and physiological role.Mol Biosyst,4, 404–416.PubMedGoogle Scholar
  42. 42.
    Gude, N.M., Stevenson, J.L., Rogers, S., Best, J.D., Kalionis, B., Huisman, M. A., Erwich, J.J., Timmer, A., & King, R. G. (2003): GLUT12 expression in human placenta in first trimester and term.Placenta,24, 566–570.PubMedGoogle Scholar
  43. 43.
    Ha, M.N., Graham, F.L., D’Souza, C.K., Muller, W.J., Igdoura, S.A., & Schellhorn, H.E. (2004): Functional rescue of vitamin C synthesis deficiency in human cells using adenoviral-based expression of murine l-gulono-gamma-lactone oxidase.Genomics,83, 482–492.PubMedGoogle Scholar
  44. 44.
    Hacker, H.J., Thorens, B., & Grobholz, R. (1991): Expression of facilitative glucose transporter in rat liver and choroid plexus. A histochemical study in native cryostat sections.Histochemistry,96, 435–439.PubMedGoogle Scholar
  45. 45.
    Hashiramoto, M., Kadowaki, T., Clark, A.E., Muraoka, A., Momomura, K., Sakura, H., Tobe, K., Akanuma, Y., Yazaki, Y., Holman, G.D., &et al. (1992). Site-directed mutagenesis of GLUT1 in helix 7 residue 282 results in perturbation of exofacial ligand binding.J Biol Chem,267, 17502–17507.PubMedGoogle Scholar
  46. 46.
    Heimberg, H., De Vos, A., Pipeleers, D., Thorens, B., & Schuit, F. (1995): Differences in glucose transporter gene expression between rat pancreatic alpha-and beta-cells are correlated to differences in glucose transport but not in glucose utilization.J Biol Chem,270, 8971–8975.PubMedGoogle Scholar
  47. 47.
    Helliwell, P.A., Richardson, M., Affleck, J., & Kellett, G. L. (2000): Stimulation of fructose transport across the intestinal brush-border membrane by PMA is mediated by GLUT2 and dynamically regulated by protein kinase C.Biochem J,350 Pt 1, 149–154.PubMedGoogle Scholar
  48. 48.
    Hirai, T., & Subramaniam, S. (2004): Structure and transport mechanism of the bacterial oxalate transporter OxlT.Biophys J,87, 3600–3607.PubMedGoogle Scholar
  49. 49.
    Hoenack, C., & Roesen, P. (1996): Inhibition of angiotensin type 1 receptor prevents decline of glucose transporter (GLUT4) in diabetic rat heart.Diabetes,45 Suppl 1, S82–87.PubMedGoogle Scholar
  50. 50.
    Hogue, D.L., & Ling, V. (1999): A human nucleobase transporter-like cDNA (SLC23A1): member of a transporter family conserved from bacteria to mammals.Genomics,59, 18–23.PubMedGoogle Scholar
  51. 51.
    Horio, F., Ozaki, K., Yoshida, A., Makino, S., & Hayashi, Y. (1985): Requirement for ascorbic acid in a rat mutant unable to synthesize ascorbic acid.J Nutr,115, 1630–1640.PubMedGoogle Scholar
  52. 52.
    Hosokawa, M., & Thorens, B. (2002): Glucose release from GLUT2-null hepatocytes: characterization of a major and a minor pathway.Am J Physiol Endocrinol Metab,282, E794–801.PubMedGoogle Scholar
  53. 53.
    Hruz, P.W., & Mueckler, M.M. (2001): Structural analysis of the GLUT1 facilitative glucose transporter (review).Mol Membr Biol,18, 183–193.PubMedGoogle Scholar
  54. 54.
    Huang, S., & Czech, M.P. (2007): The GLUT4 glucose transporter.Cell Metab,5, 237–252.PubMedGoogle Scholar
  55. 55.
    Huang, Y., Lemieux, M.J., Song, J., Auer, M., & Wang, D. N. (2003): Structure and mechanism of the glycerol-3-phosphate transporter fromEscherichia coli.Science,301, 616–620.PubMedGoogle Scholar
  56. 56.
    Ibberson, M., Uldry, M., & Thorens, B. (2000): GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin-sensitive tissues.J Biol Chem,275, 4607–4612.PubMedGoogle Scholar
  57. 57.
    Iserovich, P., Wang, D., Ma, L., Yang, H., Zuniga, G. A., Pascual, J.M., Kuang, K., De Vivo, D.C., & Fischbarg, J. (2002): Changes in glucose transport and water permeability resulting from the T310I pathogenic mutation in Glut1 are consistent with two transport channels per monomer.J Biol Chem,277, 30991–30997.PubMedGoogle Scholar
  58. 58.
    Joost, H.G., Bell, G. I., Best, J.D., Birnbaum, M.J., Charron, M.J., Chen, Y.T., Doege, H., James, D.E., Lodish, H.F., Moley, K.H., Moley, J.F., Mueckler, M., Rogers, S., Schurmann, A., Seino, S., & Thorens, B. (2002): Nomeclature of the GLUT/SLC2A family of sugar/polyol transport facilitators.Am J Physiol Endocrinol Metab,282, E974–976.PubMedGoogle Scholar
  59. 59.
    Jung, H. (2002): The sodium/substrate symporter family: structural and functional features.FEBS Lett,529, 73–77.PubMedGoogle Scholar
  60. 60.
    Kang, J.S., Kim, H.N., Jung da, J., Kim, J.E., Mun, G.H., Kim, Y.S., Cho, D., Shin, D.H., Hwang, Y. I., & Lee, W. J. (2007): Regulation of UVB-induced IL-8 and MCP-1 production in skin keratinocytes by increasing vitamin C uptake via the redistribution of SVCT-1 from the cytosol to the membrane.J Invest Dermatol,127, 698–706.PubMedGoogle Scholar
  61. 61.
    Kasahara, T., & Kasahara, M. (1996): Expression of the rat GLUT1 glucose transporter in the yeast Saccharomyces cerevisiae.Biochem J,315, 177–182.PubMedGoogle Scholar
  62. 62.
    Ke, S., Carcamo, J.M., & Golde, D.W. (2005): Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury.Faseb J,19, 1657–1667.Google Scholar
  63. 63.
    Krupka, R.M., & Deves, R. (1986): Looking for probes of gated channels: studies of the inhibition of glucose and choline transport in erythrocytes.Biochem Cell Biol,64, 1099–1107.PubMedGoogle Scholar
  64. 64.
    Larance, M., Ramm, G., & James, D.E. (2008): The GLUT4 code.Mol Endocrinol,22, 226–233.PubMedGoogle Scholar
  65. 65.
    Leary, L.D., Wang, D., Nordli, D.R., Jr., Engelstad, K., & De Vivo, D. C. (2003): Seizure characterization and electroencephalographic features in Glut-1 deficiency syndrome.Epilepsia,44, 701–707.PubMedGoogle Scholar
  66. 66.
    Levine, M., Conry-Cantilena, C., Wang, Y., Welch, R.W., Washko, P.W., Dhariwal, K.R., Park, J.B., Lazarev, A., Graumlich, J.F., King, J., & Cantilena, L. R. (1996): Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance.Proc Natl Acad Sci USA,93, 3704–3709.PubMedGoogle Scholar
  67. 67.
    Levine, M., Rumsey, S. C., Daruwala, R., Park, J.B., & Wang, Y. (1999): Criteria and recommendations for vitamin C intake.Jama,281, 1415–1423.PubMedGoogle Scholar
  68. 68.
    Levine, M., Wang, Y., Padayatty, S. J., & Morrow, J. (2001): A new recommended dietary allowance of vitamin C for healthy young women.Proc Natl Acad Sci USA,98, 9842–9846.PubMedGoogle Scholar
  69. 69.
    Liang, W. J., Johnson, D., & Jarvis, S. M. (2001): Vitamin C transport systems of mammalian cells.Mol Membr Biol,18, 87–95.PubMedGoogle Scholar
  70. 70.
    Liang, W.J., Johnson, D., Ma, L.S., Jarvis, S.M., & Wei-Jun, L. (2002): Regulation of the human vitamin C transporters expressed in COS-1 cells by protein kinase C.Am J Physiol Cell Physiol,283, C1696–1704.PubMedGoogle Scholar
  71. 71.
    Linster, C.L., & Van Schaftingen, E. (2007): Vitamin C. Biosynthesis, recycling and degradation in mammals.Febs J,274, 1–22.PubMedGoogle Scholar
  72. 72.
    Liu, Q., Vera, J.C., Peng, H., & Golde, D.W. (2001): The predicted ATP-binding domains in the hexose transporter GLUT1 critically affect transporter activity.Biochemistry,40, 7874–7881.PubMedGoogle Scholar
  73. 73.
    Lutsenko, E.A., Carcamo, J. M., & Golde, D.W. (2004): A human sodium-dependent vitamin C transporter 2 isoform acts as a dominant-negative inhibitor of ascorbic acid transport.Mol Cell Biol,24, 3150–3156.PubMedGoogle Scholar
  74. 74.
    Macheda, M.L., Williams, E.D., Best, J.D., Wlodek, M.E., & Rogers, S. (2003): Expression and localisation of GLUT1 and GLUT12 glucose transporters in the pregnant and lactating rat mammary gland:Cell Tissue Res,311, 91–97.PubMedGoogle Scholar
  75. 75.
    Madar, Z., MacLusky, N.J., & Naftolin, F. (1982): Estrogen stimulation of 3-o-methyl-D-glucose uptake in isolated rat hepatocytes.Endocrinology,110, 330–335.PubMedGoogle Scholar
  76. 76.
    Maeda, N., Hagihara, H., Nakata, Y., Hiller, S., Wilder, J., & Reddick, R. (2000): Aortic wall damage in mice unable to synthesize ascorbic acid.Proc Natl Acad Sci USA,97, 841–846.PubMedGoogle Scholar
  77. 77.
    Manolescu, A., Salas-Burgos, A.M., Fischbarg, J., & Cheeseman, C.I. (2005): Identification of a hydrophobic residue as a key determinant of fructose transport by the facilitative hexose transporter SLC2A7 (GLUT7).J Biol Chem,280, 42978–42983.PubMedGoogle Scholar
  78. 78.
    Manolescu, A.R., Witkowska, K., Kinnaird, A., Cessford, T., & Cheeseman, C. (2007): Facilitated hexose transporters: new perspectives on form and function.Physiology (Bethesda),22, 234–240.Google Scholar
  79. 79.
    Martin, A., & Frei, B. (1997): Both intracellular and extracellular vitamin C inhibit atherogenic modification of LDL by human vascular endothelial cells.Arterioscler Thromb Vasc Biol,17, 1583–1590.PubMedGoogle Scholar
  80. 80.
    Maulen, N.P., Henriquez, E.A., Kempe, S., Carcamo, J.G., Schmid-Kotsas, A., Bachem, M., Grunert, A., Bustamante, M.E., Nualart, F., & Vera, J.C. (2003): Up-regulation and polarized expression of the sodium-ascorbic acid transporter SVCT1 in post-confluent differentiated CaCo-2 cells.J Biol Chem,278, 9035–9041.PubMedGoogle Scholar
  81. 81.
    May, J.M. (1989): Differential labeling of the erythrocyte hexose carrier by N-ethylmaleimide: correlation of transport inhibition with reactive carrier sulfhydryl groups.Biochim Biophys Acta,986, 207–216.PubMedGoogle Scholar
  82. 82.
    May, J.M., Qu, Z.C., Whitesell, R. R., & Cobb, C. E. (1996): Ascorbate recycling in human erythrocytes: role of GSH in reducing dehydroascorbate.Free Radic Biol Med,20, 543–551.PubMedGoogle Scholar
  83. 83.
    McVie-Wylie, A.J., Lamson, D.R., & Chen, Y.T. (2001): Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: a candidate gene for NIDDM susceptibility.Genomics,72, 113–117.PubMedGoogle Scholar
  84. 84.
    Mehlhorn, R.J. (1991): Ascorbate- and dehydroascorbic acid-mediated reduction of free radicals in the human erythrocyte.J Biol Chem,266, 2724–2731.PubMedGoogle Scholar
  85. 85.
    Meintanis, C., Karagouni, A.D., & Diallinas, G. (2000): Amino acid residues N450 and Q449 are critical for the uptake capacity and specificity of UapA, a prototype of a nucleobase-ascorbate transporter family.Mol Membr Biol,17, 47–57.PubMedGoogle Scholar
  86. 86.
    Meredith, D., & Price, R. A. (2006): Molecular modeling of PepT1—towards a structure.J Membr Biol,213, 79–88.PubMedGoogle Scholar
  87. 87.
    Michels, A.J., Joisher, N., & Hagen, T.M. (2003): Age-related decline of sodium-dependent ascorbic acid transport in isolated rat hepatocytes.Arch Biochem Biophys,410, 112–120.PubMedGoogle Scholar
  88. 88.
    Mizushima, Y., Harauchi, T., Yoshizaki, T., & Makino, S. (1984): A rat mutant unable to synthesize vitamin C.Experientia,40, 359–361.PubMedGoogle Scholar
  89. 89.
    Montecinos, V., Guzman, P., Barra, V., Villagran, M., Munoz-Montesino, C., Sotomayor, K., Escobar, E., Godoy, A., Mardones, L., Sotomayor, P., Guzman, C., Vasquez, O., Gallardo, V., van Zundert, B., Bono, M.R., Onate, S.A., Bustamante, M., Carcamo, J.G., Rivas, C.I., & Vera, J.C. (2007): Vitamin C is an essential antioxidant that enhances survival of oxidatively stressed human vascular endothelial cells in the presence of a vast molar excess of glutathione.J Biol Chem,282, 15506–15515.PubMedGoogle Scholar
  90. 90.
    Montel-Hagen, A., Kinet, S., Manel, N., Mongellaz, C., Prohaska, R., Battini, J.L., Delaunay, J., Sitbon, M., & Taylor, N. (2008): Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C.Cell,132, 1039–1048.PubMedGoogle Scholar
  91. 91.
    Moreau, R. & Dabrowski, K. (1998): Fish acquired ascorbic acid synthesis prior to terrestrial vertebrate emergence.Free Radic Biol Med,25, 989–990.PubMedGoogle Scholar
  92. 92.
    Mori, H., Hashiramoto, M., Clark, A.E., Yang, J., Muraoka, A., Tamori, Y., Kasuga, M., & Holman, G.D. (1994): Substitution of tyrosine 293 of GLUT1 locks the transporter into an outward facing conformation.J Biol Chem,269, 11578–11583.PubMedGoogle Scholar
  93. 93.
    Moser, U. (1987): Uptake of ascorbic acid by leukocytes.Ann N Y Acad Sci,498, 200–215.PubMedGoogle Scholar
  94. 94.
    Mueckler, M., Caruso, C., Baldwin, S.A., Panico, M., Blench, I., Morris, H.R., Allard, W.J., Lienhard, G.E., & Lodish, H.F. (1985): Sequence and structure of a human glucose transporter.Science,229, 941–945.PubMedGoogle Scholar
  95. 95.
    Nishimura, H., Pallardo, F.V., Seidner, G.A., Vannucci, S., Simpson, I.A., & Birnbaum, M.J. (1993): Kinetics of GLUT1 and GLUT4 glucose transporters expressed in Xenopus oocytes.J Biol Chem,268, 8514–8520.PubMedGoogle Scholar
  96. 96.
    Nomura, M., Takahashi, T., Nagata, N., Tsutsumi, K., Kobayashi, S., Akiba, T., Yokogawa, K., Moritani, S., & Miyamoto, K. (2008): Inhibitory mechanisms of flavonoids on insulin-stimulated glucose uptake in MC3T3-G2/PA6 adipose cells.Biol Pharm Bull,31, 1403–1409.PubMedGoogle Scholar
  97. 97.
    Nualart, F.J., Rivas, C.I., Montecinos, V.P., Godoy, A.S., Guaiquil, V.H., Golde, D.W., & Vera, J.C. (2003): Recycling of vitamin C by a bystander effect.J Biol Chem,278, 10128–10133.PubMedGoogle Scholar
  98. 98.
    Nunes, G.L., Robinson, K., Kalynych, A., King, S.B., 3rd, Sgoutas, D.S., & Berk, B.C. (1997): Vitamins C and E inhibit O2-production in the pig coronary artery.Circulation,96, 3593–3601.PubMedGoogle Scholar
  99. 99.
    Ogawa, A., Kurita, K., Ikezawa, Y., Igarashi, M., Kuzumaki, T., Daimon, M., Kato, T., Yamatani, K., & Sasaki, H. (1996): Functional localization of glucose transporter 2 in rat liver.J Histochem Cytochem,44, 1231–1236.PubMedGoogle Scholar
  100. 100.
    Olson, A.L., & Knight, J.B. (2003): Regulation of GLUT4 expression in vivo and in vitro.Front Biosci,8, 401–409.Google Scholar
  101. 101.
    Olsowski, A., Monden, I., & Keller, K. (1998): Cysteine-scanning mutagenesis of flanking regions at the boundary between external loop I or IV and transmembrane segment II or VII in the GLUT1 glucose transporter.Biochemistry,37, 10738–10745.PubMedGoogle Scholar
  102. 102.
    Olsowski, A., Monden, I., Krause, G., & Keller, K. (2000): Cysteine scanning mutagenesis of helices 2 and 7 in GLUT1 identifies an exofacial cleft in both transmembrane segments.Biochemistry,39, 2469–2474.PubMedGoogle Scholar
  103. 103.
    Pawagi, A.B., & Deber, C.M. (1990): Ligand-dependent quenching of tryptophan fluorescence in human erythrocyte hexose transport protein.Biochemistry,29, 950–955.PubMedGoogle Scholar
  104. 104.
    Phay, J.E., Hussain, H.B., & Moley, J.F. (2000): Cloning and expression analysis of a novel member of the facilitative glucose transporter family, SLC2A9 (GLUT9).Genomics,66, 217–220.PubMedGoogle Scholar
  105. 105.
    Purhonen, P., Lundback, A.K., Lemonnier, R., Leblanc, G., & Hebert, H. (2005): Three-dimensional structure of the sugar symporter melibiose permease from cryo-electron microscopy.J Struct Biol,152, 76–83.PubMedGoogle Scholar
  106. 106.
    Rampal, A.L., & Jung, C.Y. (1987): Substrate-induced conformational change of human erythrocyte glucose transporter: inactivation by alkylating reagents.Biochim Biophys Acta,896, 287–294.PubMedGoogle Scholar
  107. 107.
    Reidling, J.C., Subramanian, V.S., Dahhan, T., Sadat, M., & Said, H.M. (2008): Mechanisms and regulation of vitamin C uptake: studies of the hSVCT systems in human liver epithelial cells.Am J Physiol Gastrointest Liver Physiol,295, G1217–1227.PubMedGoogle Scholar
  108. 108.
    Rogers, S., Chandler, J.D., Clarke, A.L., Petrou, S., & Best, J.D. (2003): Glucose transporter GLUT12-functional characterization in Xenopus laevis oocytes.Biochem Biophys Res Commun,308, 422–426.PubMedGoogle Scholar
  109. 109.
    Rogers, S., Macheda, M.L., Docherty, S.E., Carty, M.D., Henderson, M.A., Soeller, W.C., Gibbs, E.M., James, D.E., & Best, J.D. (2002): Identification of a novel glucose transporter-like protein-GLUT-12.Am J Physiol Endocrinol Metab,282, E733–738.PubMedGoogle Scholar
  110. 110.
    Rose, R.C., Choi, J.L., & Koch, M.J. (1988): Intestinal transport and metabolism of oxidized ascorbic acid (dehydroascorbic acid).Am J Physiol,254, G824–828.PubMedGoogle Scholar
  111. 111.
    Rumsey, S.C., Daruwala, R., Al-Hasani, H., Zarnowski, M.J., Simpson, I.A., & Levine, M. (2000): Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes.J Biol Chem,275, 28246–28253.PubMedGoogle Scholar
  112. 112.
    Rumsey, S.C., Kwon, O., Xu, G.W., Burant, C.F., Simpson, I., & Levine, M. (1997): Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid.J Biol Chem,272, 18982–18989.PubMedGoogle Scholar
  113. 113.
    Saier, M.H., Jr., Beatty, J.T., Goffeau, A., Harley, K.T., Heijne, W.H., Huang, S.C., Jack, D.L., Jahn, P.S., Lew, K., Liu, J., Pao, S.S., Paulsen, I.T., Tseng, T.T., & Virk, P.S. (1999): The major facilitator superfamily.J Mol Microbiol Biotechnol,1, 257–279.PubMedGoogle Scholar
  114. 114.
    Sakamoto, O., Ogawa, E., Ohura, T., Igarashi, Y., Matsubara, Y., Narisawa, K., & Iinuma, K. (2000): Mutation analysis of the GLUT2 gene in patients with Fanconi-Bickel syndrome.Pediatr Res,48, 586–589.PubMedGoogle Scholar
  115. 115.
    Salas-Burgos, A., Iserovich, P., Zuniga, F., Vera, J.C., & Fischbarg, J. (2004): Predicting the three-dimensional structure of the human facilitative glucose transporter glut1 by a novel evolutionary homology strategy: insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules.Biophys J,87, 2990–2999.PubMedGoogle Scholar
  116. 116.
    Santer, R., Schneppenheim, R., Dombrowski, A., Gotze, H., Steinmann, B., & Schaub, J. (1997): Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome.Nat Genet,17, 324–326.PubMedGoogle Scholar
  117. 117.
    Sapper, H., Kang, S.O., Paul, H.H., & Lohmann, W. (1982): The reversibility of the vitamin C redox system: electrochemical reasons and biological aspects.Z Naturforsch [C],37, 942–946.Google Scholar
  118. 118.
    Savini, I., Catani, M.V., Duranti, G., Ceci, R., Sabatini, S., & Avigliano, L. (2005): Vitamin C homeostasis in skeletal muscle cells.Free Radic Biol Med,38, 898–907.PubMedGoogle Scholar
  119. 119.
    Savini, I., Rossi, A., Pierro, C., Avigliano, L., & Catani, M.V. (2008): SVCT1 and SVCT2: key proteins for vitamin C uptake.Amino Acids,34, 347–355.PubMedGoogle Scholar
  120. 120.
    Schorah, C.J. (1992): The transport of vitamin C and effects of disease.Proc Nutr Soc,51, 189–198.PubMedGoogle Scholar
  121. 121.
    Schurmann, A., Doege, H., Ohnimus, H.., Monser, V., Buchs, A., & Joost, H.G. (1997): Role of conserved arginine and glutamate residues on the cytosolic surface of glucose transporters for transporter function.Biochemistry,36, 12897–12902.PubMedGoogle Scholar
  122. 122.
    Sergeant, S., & Kim, H.D. (1985): Inhibition of 3-O-methylglucose transport in human erythrocytes by forskolin.J Biol Chem,260, 14677–14682.PubMedGoogle Scholar
  123. 123.
    Sigal, N., Vardy, E., Molshanski-Mor, S., Eitan, A., Pilpel, Y., Schuldiner, S., & Bibi, E. (2005): 3D model of the Escherichia coli multidrug transporter MdfA reveals an essential membrane-embedded positive charge.Biochemistry,44, 14870–14880.PubMedGoogle Scholar
  124. 124.
    Simpson, I.A., Dwyer, D., Malide, D., Moley, K.H., Travis, A., & Vannucci, S.J. (2008): The facilitative glucose transporter GLUT3: 20 years of distinction.Am J Physiol Endocrinol Metab,295, E242–253.PubMedGoogle Scholar
  125. 125.
    Song, J., Kwon, O., Chen, S., Daruwala, R., Eck, P., Park, J.B., & Levine, M. (2002): Flavonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and Glucose.J Biol Chem,277, 15252–15260.PubMedGoogle Scholar
  126. 126.
    Song, X.M., Hresko, R.C., Mueckler, M. (2008): Identification of amino acid residues within the C terminus of the Glut4 glucose transporter that are essential for insulin-stimulated redistribution to the plasma membrane.J Biol Chem,283, 12571–12585.PubMedGoogle Scholar
  127. 127.
    Sotiriou, S., Gispert, S., Cheng, J., Wang, Y., Chen, A., Hoogstraten-Miller, S., Miller, G.F., Kwon, O., Levine, M., Guttentag, S.H., & Nussbaum, R.L. (2002): Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival.Nat Med,8, 514–517.PubMedGoogle Scholar
  128. 128.
    Stratakis, C.A., Taymans, S.E., Daruwala, R., Song, J., & Levine, M. (2000): Mapping of the human genes (SLC23A2 and SLC23A1) coding for vitamin C transporters 1 and 2 (SVCT1 and SVCT2) to 5q23 and 20p12, respectively.J Med Genet,37, E20.PubMedGoogle Scholar
  129. 129.
    Subramanian, V.S., Marchant, J.S., Boulware, M.J., & Said, H.M. (2004): A C-terminal region dictates the apical plasma membrane targeting of the human sodium-dependent vitamin C transporter-1 in polarized epithelia.J Biol Chem,279, 27719–27728.PubMedGoogle Scholar
  130. 130.
    Subramanian, V.S., Marchant, J.S., Reidling, J.C., & Said, H.M. (2008): N-Glycosylation is required for Na+-depent vitamin C transporter functionality.Biochem Biophys Res Commun,374, 123–127.PubMedGoogle Scholar
  131. 131.
    Takanaga, H., Mackenzie, B., & Hediger, M.A. (2004): Sodium-dependent ascorbic acid transporter family SLC23.Pflugers Arch,447, 677–682.PubMedGoogle Scholar
  132. 132.
    Takata, K., Kasahara, T., Kasahara, M., Ezaki, O., & Hirano, H. (1992): Localization of erythrocyte/HepG2-type glucose transporter (GLUT1) in human placental villi.Cell Tissue Res,267, 407–412.PubMedGoogle Scholar
  133. 133.
    Thorens, B. (1992): Molecular and cellular physiology of GLUT-2, a high-Km facilitated diffusion glucose transporter.Int Rev Cytol,137, 209–238.PubMedGoogle Scholar
  134. 134.
    Thorens, B., Sarkar, H.K., Kaback, H.R. & Lodish, H.F. (1988): Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells.Cell,55, 281–290.PubMedGoogle Scholar
  135. 135.
    Ting, H.H., Timimi, F.K., Haley, E.A., Roddy, M.A., Ganz, P., & Creager, M.A. (1997): Vitamin C improves endothelium-dependent vasodilation in forearm resistance vessels of humans with hypercholesterolemia.Circulation,95, 2617–2622.PubMedGoogle Scholar
  136. 126.
    Tsukaguchi, H., Tokui, T., Mackenzie, B., Berger, U.V., Chen, X.Z., Wang, Y., Brubaker, R.F., & Heliger, M.A. (1999): A family of mammalian Na+-dependent L-ascorbic acid transporters.Nature,399, 70–75.PubMedGoogle Scholar
  137. 137.
    Uldry, M., Ibberson, M., Hosokawa, M., & Thorens, B. (2002): GLUT2 is a high affinity glucosamine transporter.FEBS Lett,524, 199–203.PubMedGoogle Scholar
  138. 138.
    Uldry, M., & Thorens, B. (2004): The SLC2 family of facilitated hexose and polyol transporters.Pflugers Arch,447, 480–489.PubMedGoogle Scholar
  139. 139.
    Varma, S., Campbell, C.E., & Kuo, S.M. (2008): Functional role of consereed transmembrane segment 1 residues in human sodium-dependent vitamin C transporters.Biochemistry,47, 2952–2960.PubMedGoogle Scholar
  140. 140.
    Vera, J.C., Reyes, A.M., Velasquez, F.V., Rivas, C.I., Zhang, R.H., Strobel, P., Slebe, J.C., Nunez-Alarcon, J., & Golde, D.W. (2001): Direct inhibition of the hexose transporter GLUT1 by tyrosine kinase inhibitors.Biochemistry,40, 777–790.PubMedGoogle Scholar
  141. 141.
    Vera, J.C., Rivas, C.I., Fischbarg, J., & Golde, D.W. (1993): Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid.Nature,364, 79–82.PubMedGoogle Scholar
  142. 142.
    Vera, J.C., Rivas, C.I., Velasquez, F.V., Zhang, R.H., Concha, II, & Golde, D.W. (1995): Resolution of the facilitated transport of dehydroascorbic acid from its intracellular accumulation as ascorbic acid.J Biol Chem,270, 23706–23712.PubMedGoogle Scholar
  143. 143.
    Wallberg-Henriksson, H., & Zierath, J.R. (2001): GLUT4: a key player regulating glucose homeostasis? Insights from transgenic and knockout mice (review).Mol Membr Biol,18, 205–211.PubMedGoogle Scholar
  144. 144.
    Wang, H., Dutta, B., Huang, W., Devoe, L.D., Leibach, F.H., Ganapathy, V., & Prasad, P.D. (1999): Human Na(+)-dependent vitamin C transporter 1 (hSVCT1): primary structure, functional characteristics and evidence for a non-functional splice variant.Biochim Biophys Acta,1461, 1–9.PubMedGoogle Scholar
  145. 145.
    Wang, Y., Mackenzie, B., Tsukaguchi, H., Weremowicz, S., Morton, C.C., & Hediger, M.A. (2000): Human vitamin C (L-ascorbic acid) transporter SVCT1.Biochem Biophys Res Commun,267, 488–494.PubMedGoogle Scholar
  146. 146.
    Wang, Y., Russo, T.A., Kwon, O., Chanock, S., Rumsey, S.C., & Levine, M. (1997): Ascorbate recycling in human neutrophils: induction by bacteria.Proc Natl Acad Sci USA,94, 13816–13819.PubMedGoogle Scholar
  147. 147.
    Wilson, J.X. (2005): Regulation of vitamin C transport.Annu Rev Nutr. 25, 105–125.PubMedGoogle Scholar
  148. 148.
    Winkler, B.S. (1987): In vitro oxidation of ascorbic acid and its prevention by GSH.Biochim Biophys Acta,925, 258–264.PubMedGoogle Scholar
  149. 149.
    Wood, J.M., Culham, D.E., Hillar, A., Vernikovska, Y.I., Liu, F., Boggs, J.M., & Keates, R.A. (2005): A structural model for the osmosensor, transporter; and osmoregulator ProP of Escherichia coli.Biochemistry,44, 5634–5646.PubMedGoogle Scholar
  150. 150.
    Wu, X., & Freeze, H.H. (2002): GLUT14, a duplicon of GLUT3, is specifically expressed in testis as alternative splice forms.Genomics,80, 553–557.PubMedGoogle Scholar
  151. 151.
    Wu, X., Itoh, N., Taniguchi, T., Hirano, J., Nakanishi, T., & Tanaka, K. (2004): Stimulation of differentiation in sodium-dependent vitamin C transporter 2 overexpressing MC3T3-E1 osteoblatts.Biochem Biophys Res Commun,317, 1159–1164.PubMedGoogle Scholar
  152. 152.
    Wu, X., Itoh, N., Taniguchi, T., Nakanishi, T., Tatsu, Y., Yumoto, N., & Tanaka, K. (2003): Zinc-induced sodium-dependent vitamin C transporter 2 expression: potent roles in osteoblast differentiation.Arch Biochem Biophys,420, 114–120.PubMedGoogle Scholar
  153. 153.
    Wu, X., Li, W., Sharma, V., Godzik, A., & Freeze, H.H. (2002): Cloning and characterization of glucose transporter 11, a novel sugar transporter that is alternatively spliced in various tissues.Mol Genet Metab,76, 37–45.PubMedGoogle Scholar
  154. 154.
    Zamora-Leon, S.P., Golde, D.W., Concha, II, Rivas, C.I., Delgado-López, F., Baselga, J., Nualart, F., & Vera, J.C. (1996): Expression of the fructose transporter GLUT5 in human breast cancer.Proc Natl Acad Sci USA,93, 1847–1852.PubMedGoogle Scholar
  155. 155.
    Zannoni, V., Lynch, M., Goldstein, S., & Sato, P. (1974): A rapid micromethod for the determination of ascorbic acid in plasma and tissues.Biochem Med,11, 41–48.PubMedGoogle Scholar
  156. 156.
    Zhao, F.Q. & Keating, A.F. (2007): Functional properties and genomics of glucose transporters.Curr Genomics,8, 113–128.PubMedGoogle Scholar
  157. 157.
    Zuniga, F.A., Shi, G., Haller, J.F., Rubashkin, A., Flynn, D.R., Iserovich, P., & Fischbarg, J. (2001): A three-dimensional model of the human facilitative glucose transporter Glut1.J Biol Chem,276, 44970–44975.PubMedGoogle Scholar

Copyright information

© Universidad de Navarra 2008

Authors and Affiliations

  • C. I. Rivas
    • 1
    Email author
  • F. A. Zúñiga
    • 1
  • A. Salas-Burgos
    • 1
  • L. Mardones
    • 1
  • V. Ormazabal
    • 1
  • J. C. Vera
    • 1
  1. 1.Depto. de Fisiopatología, Facultad de Ciencias BiológicasUniversidad de ConcepciónConcepciónChile

Personalised recommendations