Skip to main content
Log in

Vygotskian theory and mathematics education: Resolving the conceptual-procedural dichotomy

  • Published:
European Journal of Psychology of Education Aims and scope Submit manuscript

Abstract

The aim of this paper is to demonstrate that in spite of some superficial similarities the current mathematics reform in the US based on constructivist principles differs substantially from mathematical education based on Vygotskian cultural-historical theory (V.V. Davydov’s mathematics program), and to illustrate the manner in which Davydov’s program virtually obliterates the conceptual-procedural division that has fueled the current “math wars”. Both constructivism and Davydov’s approach emphasize the active character of students’ acquisition of mathematical concepts. Constructivists, however, begin the instructional process from the children’s preexistent concepts while Vygotskians reorient it toward acquisition of what Vygotsky defined as “scientific” rather than “spontaneous, everyday” concepts. A three-year study of the implementation of Davydov’s elementary mathematics program in a school setting in the US found that the American children overcame the initial challenges of the program, consistently resolved computational errors conceptually, and finally demonstrated the ability to solve high school level mathematics problems. The curriculum appeared to foster the development of theoretical thinking, an explicit goal of Davydov’s program, which constitutes its major value and educational significance.

Résumé

Malgré quelques similarités superficielles, la réforme courante des mathématiques aux Etats-Unis qui est basée sur les principes constructivistes differe considérablement de l’éducation basée sur la théorie culturelle-historique de Vygotsky. Le programme d’études pour les mathématiques élémentaires de V.V. Davydov, basé sur la théorie de Vygotsky, résout la division conceptuelle-procédurale qui a intensifié les récentes “guerres de maths”. Et le constructivisme et la théorie de Davydov soulignent le caractère actif de l’acquisition des concepts mathématiques par les élèves. Cependant les constructivistes commencent le processus de l’instruction d’après les concepts préexistents des enfants tandis que les Vygotskiens le dirigent vers l’acquisition de ce que Vygotsky a défini comme concepts “scientifiques” plutôt que “spontanés, quotidiens”. Les deux théories different dans le développement de l’algorithme comme un produit culturel et historique qui est entièrement conceptuel (Davydov) plutôt qu’un règle de calcul qui peut être remis à une calculatrice (constructivisme); et l’inclusion des modèles schématiques (absente dans les théories constructivistes) qui fonctionnent comme outils psychologiques dans le programme d’études de Davydov. Une étude de trois ans sur le programme de l’enseignement des mathématiques élémentaires de Davydov mis en pratique dans une école aux Etats-Unis a trouvé que les enfants ont résolu des erreurs de calcul d’une façon conceptuelle et ont démontré la compétence pour résoudre des problèmes de mathématiques typiquement trouvés aux niveaux du collège et du lycée. Le programme d’études a encouragé le developpement d’une réflexion théorique, un but explicite du programme d’études de Davydov, qui constitue sa valeur principale et son importance éducative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakhurst, D. (1997). Activity, consciousness, and communication. In M. Cole, Y. Engeström, & O. Vasquez (Eds.),Mind, culture, and activity: Seminal papers from the Laboratory of Comparative Human Cognition (pp. 147–163). Cambridge, UK: Cambridge University Press. (Original work published in 1988)

    Google Scholar 

  • Barnett, J.H. (1998). A brief history of algorithms in mathematics. In L.J. Kenney (Eds.),The teaching and learning of algorithms in school mathematics (pp. 69–77). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Carraher, T.N., Carraher, D.W., & Schliemann, A.D. (1985). Mathematics in the streets and in schools.British Journal of Developmental Psychology, 3, 21–29.

    Google Scholar 

  • Carraher, T.N., Carraher, D.W., & Schliemann, A.D. (1983). Mathematics in the streets and schools. Unpublished manuscript, Universidade Federal de Pernambuco, Recife, Brazil.

    Google Scholar 

  • Carroll, W.M., & Porter, D. (1998). Alternative algorithms for whole-numberr operations. In L.J. Morrow & M.J. Kenney (Eds.),The teaching and learning of algorithms in school mathematics (pp. 106–114). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Chi, M., Feltovich, P., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices.Cognitive Science, 5, 121–152.

    Article  Google Scholar 

  • Davydov, V.V. (1975). The psychological characteristics of the “prenumerical” period of mathematics instruction. In L.P. Steffe (Ed.),Soviet studies in the psychology of learning and teaching mathematics (vol. 7, pp. 109–206). Chicago: University of Chicago Press.

    Google Scholar 

  • Davydov, V.V. (1988). The concept of theoretical generalization and problems of educational psychology.Studies in Soviet thought, 36, 169–202. (Original work published in 1972)

    Article  Google Scholar 

  • Davydov, V.V. (1990).Types of generalization in instruction: Logical and psychological problems in the structuring of school curricula. Reston, VA: National Council of Teachers of Mathematics. (Original work published in 1972)

    Google Scholar 

  • Davydov, V.V. (1992). The psychological analysis of multiplication procedures.Focus on Learning Problems in Mathematics, 14(1), 3–67.

    Google Scholar 

  • Davydov, V.V., Gorbov, S.F., Mikulina, G.G., & Saveleva, O.V. (1999).Mathematics: Class 1. Binghamton, New York: State University of New York.

    Google Scholar 

  • Davydov, V.V., Gorbov, S.F., Mikulina, G.G., & Saveleva, O.V. (2000).Mathematics: Class 2. Binghamton, New York: State University of New York.

    Google Scholar 

  • Davydov, V.V., Gorbov, S.F., Mikulina, G.G., Savyelyeva, O.V., & Tabachnikova, N.L. (2001).Mathematics: 3rd Grade. Binghamton, New York: State University of New York.

    Google Scholar 

  • Hanna, G. (1983).Rigorous proof in mathematics education. Toronto: Ontario Institute for Studies in Education.

    Google Scholar 

  • Il’enkov, E.V. (1964). Skkola dolzhna uchit’ myslit [The school should teach tinking].Voprosy Estetiki [Questions in Aesthetics], No. 6. Moskow: Iskusstvo.

    Google Scholar 

  • Kamii, C., & Dominick, A. (1998). The harmful effects of algorithms in grades 1–4. In L.J. Morrow & M.J. Kenney (Eds.),The teaching and learning of algorithms in school mathematics (pp. 130–140). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Kouba, V.L., & Wearne, D. (2000). Whole number properties and operations. In E.A. Silver & P.A. Kenney (Eds.),Results from the seventh mathematics assessment of the National Assessment of Educational Progress (pp. 141–162). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Kouba, V.L., Zawojewski, J.S., & Strutchens, M.E. (1997). What do students know about numbers and operations? In P.A. Kenney & E.A. Silver (Eds.),Results from the sixth mathematics assessment of the National Assessment of Educational Progress (pp. 87–140). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Kozulin, A. (1998).Psychological tools: A sociocultural approach to education. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Krutetskii, V.A. (1969). An investigation of mathematical abilities in schoolchildren. In J. Kilpatrick & I. Wirszup (Eds.),Soviet Studies in the Psychology of Learning and Teaching Mathematics (Vol. II): The Structure of Mathematical Abilities (pp. 5–57). Chicago: University of Chicago Press.

    Google Scholar 

  • Krutetskii, V.A. (1976).The psychology of mathematical abilities in schoolchildren. Chicago: University of Chicago Press. (Original work published in 1968, in Russian)

    Google Scholar 

  • Langer, J. (1997).The power of mindful learning. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Lave, J. (1988).Cognition in practice. New York: Cambridge University Press.

    Google Scholar 

  • Leontiev, A.N. (1981). The problem of activity in psychology. In J.B. Wertsch (Ed.),The concept of activity in Soviet psychology (pp. 37–71). Armonk, New York: M.E. Sharpe. (Original work published in 1972)

    Google Scholar 

  • Morrow, L.J. (1998). Whither algorithms? Mathematics educators express their views. In L.J. Morrow & M.J. Kenney (Eds.),The teaching and learning of algorithms in school mathematics (pp. 1–6), Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • National Council of Teachers of Mathematics (1989).Curriculum and evaluation standards for school mathematics. Reston, VA: Author.

    Google Scholar 

  • National Council of Teachers of Mathematics (2000).Principles and standards for school mathematics. Reston, VA: Author.

    Google Scholar 

  • Novak, J.D., & Gowin, D.B. (1984).Learning how to learn. New York: Cambridge University Press.

    Google Scholar 

  • Saxe, G.B. (1997). Selling candy: A study of cognition in context. In M. Cole, Y. Engeström, & O. Vasquez (Eds.),Mind, culture, and activity: Seminal papers from the Laboratory of Comparative Human Cognition (pp. 330–337). Cambridge, UK: Cambridge University Press. (Original work published in 1989)

    Google Scholar 

  • Schmidt, W., Houang, R., & Cogan, L. (2002). A coherent curriculum: The case of mathematics.American Educator, 26(2), 10–26.

    Google Scholar 

  • Schmittau, J. (1993a). Connecting mathematical knowledge: A dialectical perspective.Journal of Mathematical Behavior, 12, 179–201.

    Google Scholar 

  • Shmittau, J. (1993b). Vygotskian scientific concepts: Implications for mathematics education.Focus on Learning Problems in Mathematics, 15(2–3), 29–39.

    Google Scholar 

  • Schmittau, J. (1994). Scientific concepts and pedagogical mediation: A comparative analysis of category structure in Russian and U.S. students. Paper presented at the Annual meeting of the American Educational Research Association, New Orleans, LA.

  • Schmittau, J. (2003a). Beyond constructivisim and back to basics: A cultural historical alternative to the teaching of the base ten positional system. In B. Rainforth & J. Kugelmass (Eds.),Curriculum and instruction for all learners: Blending systematic and constructivist approaches in inclusive elementary schools Baltimore, MD: Brookes Publishing Co.

    Google Scholar 

  • Schmittau, J. (2003b). Cultural historical theory and mathematics education. In A. Kozulin, B. Gindis, S. Miller, & V. Ageyev (Eds.),Vygotsky’s educational theory in cultural context. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Scribner, S. (1997). Mind in action: A functional approach to thinking. In M. Cole, Y. Engeström, & O. Vasquez (Eds.),Mind, culture, and activity: Seminal papers from the Laboratory of Comparative Human Cognition (pp. 354–368). Cambridge, UK: Cambridge University Press. (Original work published in 1992)

    Google Scholar 

  • Thorndike, E.L. (1922).The psychology of arithmetic. New York: Macmillan.

    Book  Google Scholar 

  • Tikhomirov, L.S. (1981). The psychological consequences of computerization. In J.V. Wertsch (Ed.),The concept of activity in Soviet psychology (pp. 256–278). Armonk, New York: M.E. Sharpe. (Original work published in 1972)

    Google Scholar 

  • Vygotsky, L.S. (1986).Thought and language. Cambridge, MA: MIT Press. (Original work published in 1934)

    Google Scholar 

  • Vygotsky, L.S., & Luria, A.R. (1993).Studies on the history of behavior: Ape, primitive, and child. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Willingham, D.T. (2002). Inflexible knowledge: The first step to expertise.American Educator, 26(4), 31–33, 48–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmittau, J. Vygotskian theory and mathematics education: Resolving the conceptual-procedural dichotomy. Eur J Psychol Educ 19, 19–43 (2004). https://doi.org/10.1007/BF03173235

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03173235

Key words

Navigation