Skip to main content
Log in

Understanding the use of domain and task knowledge in the interpretation of graphical displays

  • Published:
European Journal of Psychology of Education Aims and scope Submit manuscript

Abstract

Given the complexity of most cognitive processes and that of the associated knowledge base, which facilitates effective and efficient use of electronic diagnostic equipment, this paper addresses the important area of understanding how human operators interact with and construct meaningful understanding from the data displayed by such devices. Some work has been done in areas related to graphical and diagrammatical information processing. However, none of these studies considered the interaction of domain and task experts’ performance on similar graphical tasks. The exploratory study presented in this paper intends to identify patterns in cognitive processes used by ultrasound operators, and to provide an explanation for the reason for such patterns in light of the structure and deployment of domain and task-knowledge. The findings illustrate the complex interrelatedness of theoretical and practical knowledge, which constitutes professional knowledge. Professional knowledge becomes more complex when individuals depend on sophisticated tools to assist in their thinking. The study suggests a possibility to think about professional knowledge as a distributed knowledge across task and domain knowledge and knowledge inherent in the tools. Such distributed knowledge in professional practice needs further exploration.

Résumé

Etant donné la complexité de la plupart des processus cognitifs et cela de la base de connaissance associée, qui facilite l’utilisation efficace et efficace de l’équipement diagnostique électronique, adresses de cet article le domaine important de comprendre comment les opérateurs humains agissent l’un sur l’autre avec et construisent la compréhension signicative des données montrées par de tels dispositifs. Un certain travail a été effectué dans les secteurs liés au traitement de l’information graphique et schématique. Cependant, aucune de ces études n’a considéré l’interaction de l’exécution des experts en matière de domaine et de tâche sur les tâches graphiques semblables. L’étude exploratoire présentée en cet article prévoit pour identifier des modèles dans des processus cognitifs employés par des opérateurs d’ultrasons, et pour fournir une explication pour la raison pour de tels modèles à la lumière de la structure et de l’déploiement du domaine et de la connaissance de tâche. Les résultats illustrent l’interrelatedness complèxe de la connaissance théorique et pratique, qui constitue des connaissances professionnelles. Les connaissances professionnelles deviennent plus complexes quand les individus dépendent des outils sophistiqués pour aider à leur pensée. L’étude suggère une possibilité pour penser aux connaissances professionnelles comme connaissance distribuée à travers la connaissance de tâche et de domaine et la connaissance inhérentes dans les outils. Une telle connaissance distribuée dans la pratique professionnelle a besoin davantage d’exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anzai, Y. (1987). Cognitive control of real-time Event-Driven Systems.Cognitive Science, 8, 221–254.

    Article  Google Scholar 

  • Anzai, Y. (1991). Learning and use of representations for physics expertise. In K.A. Ericsson & J. Smith (Eds.),Towards a general theory of expertice: Prospects and limits (pp. 64–69) Cambridge, MA: MIT Press.

    Google Scholar 

  • Anzai, Y., & Patel, V.L. (1992). How one learns graph reading skills for solving biochemistry problems. In D.A. Evans & V.L. Patel (Eds.),Advanced models of cognition for medical training and practice (pp. 283–304). New York: Springer-Verlag.

    Google Scholar 

  • Blois, M.S. (1990). Medicine and the nature of vertical reasoning.New England Journal of Medicine, 318, 847–851.

    Article  Google Scholar 

  • Chi, M., Bassok, M., Lewis, M.W., Reiman, P., & Glaser, R. (1989). Self explanation: How students study and use worked example in learning to solve problems.Cognitive Science, 13, 145–182.

    Article  Google Scholar 

  • Chi, M., Glaser, R., & Rees, P. (1982). Expertise in problem solving. In R. Sternberg (Eds.),Advances in the psychology of human intelligence (vol. 1, pp. 1–75). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Cooper, L. (1988). The role of spatial representations in complex problem solving. In S. Schiffer & S. Steele (Eds.),Cognition and representations (pp. 53–86). Boulder, Colorado: Westview Press.

    Google Scholar 

  • Forbus, K.D. (1995). Qualitative spatial reasoning framework and frontiers. In J. Glassgow, N.H. Narayanan, & B. Chandrasekaran (Eds.),Diagrammatic reasoning: Cognitive and computational perspectives. California: MIT Press.

    Google Scholar 

  • Hall, E.P., Gott, S.P., & Pokorny, R.A. (1995).A procedural guide to cognitive task analysis: The PARI methodology. AL/HR-tr-1995-0108, US Air Force Material Command, Brooks Air Force Base, Texas.

    Google Scholar 

  • Kaempf, G.L., & Klein, G. (1994). Aeronautical decision making: The next generation. In N. Johnston, N. McDonald, & R. Fuller (Eds.),Aviation Psychology in Action. UK: Avebury Technical Press.

    Google Scholar 

  • Kaufman, D., & Patel, V.L. (1991). Problem solving in the clinical interview: A cognitive analysis of the performance of physicians, residents and studients.Teaching and Learning in Medicine, 13, 6–14.

    Article  Google Scholar 

  • Kaufman, D., Patel V.L., & Magder, S. (1996). The explanation role in spontaneously generated analogies in reasoning about physiological concepts.International Journal of Science Education, 18, 369–386.

    Article  Google Scholar 

  • Koedinger, K., & Anderson, J. (1995). Abstract planning and perceptual chunks: Elements of expertise in geometry. In J. Glassgow, N.H. Narayanan, & B. Chandrasekaran (Eds.),Diagrammatic reasoning: Cognitive and computational perspectives (pp. 527–626). California: MIT Press.

    Google Scholar 

  • Mayer, R.E., & Sims, V.K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning.Journal of Educational Psychology, 86, 389–401.

    Article  Google Scholar 

  • Patel, V.L., & Groen, G.J. (1986). Knowledge based solution strategies in medical reasoning.Cognitive Science, 10, 91–116.

    Article  Google Scholar 

  • Patel, V.L., & Groen, G.J. (1991). Developmental accounts of the transition from student to physician: Some general problems and suggestions.Medical Education, 25, 527–535.

    Article  Google Scholar 

  • Pillay, H. (1994). Cognitive load and mental rotation: Structuring orthographic drawing worked examples to enhance learning.Instructional Science, 22, 91–113.

    Article  Google Scholar 

  • Pillay, H. (1997). Cognitive load and assembly tasks: Effect of instructional format on learning.Educational Psychology, 17, 285–299.

    Article  Google Scholar 

  • Pillay, H. (1998). Cognitive skills required in contemporary workplaces.Studies in Continuing Education, 20, 71–81.

    Article  Google Scholar 

  • Richards, T., & Richards, L. (1991). The transformation of qualitative method: Computational paradigms and research processes. In N.G. Fielding & R.M. Lee (Eds.),Using computers in qualitative research. London, Sage.

    Google Scholar 

  • Schaffner, K.F. (1986). Exemplar reasoning about biological models and diseases: A relation between the philosophy of medicine and the philosophy of science.Journal of Medicine and Philosophy, 11, 63–102.

    Google Scholar 

  • Schunn, C.D., & Anderson, J.R. (1999). The generality/specificity of expertise in scientific reasoning.Cognitive Science, 23, 337–370.

    Article  Google Scholar 

  • Shraagen, J.M. (1993). How experts solve a novel problem in experimental design.Cognitive Science, 17, 285–309.

    Article  Google Scholar 

  • Simon, H.A. (1978). Information processing theory of human problem solving. In W.K. Estes (Eds.),Handbook of learning and cognitive processes (vol. 5, pp. 271–295). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Simon, H.A. (1992). What is an “explanation” of behaviour?Psychological Science, 3, 150–161.

    Article  Google Scholar 

  • Treisman, A. (1988). Features and objects: The Fourteenth Bartlett Memorial Lecture.Quarterly Journal of Experimental Psychology: Human Experimental Psychology 40A, 201–237.

    Google Scholar 

  • VanLehn, K. (1991). Rule acquisition events in the discovery of problem-solving strategies.Cognitive Science, 15, 1–47.

    Article  Google Scholar 

  • Voss, J.F., Tyler, S.W., & Yengo, L.A. (1983). Individual differences in the solving of social science problems. In R.F. Dillon & R.R. Schmeck (Eds.),Individual differences in cognition (vol. 1, pp. 205–232). New York: Academic.

    Google Scholar 

  • Wang, Lee, & Zeevat (1995). Reasoning with diagrammatic representations. In J. Glassgow, N.H. Narayanan, & B. Chandrasekaran (Eds.),Diagrammatic reasoning: Cognitive and computational perspectives (pp. 339–396). California: MIT Press.

    Google Scholar 

  • Winn, W. (1993). An account of how readers search for information in diagrams.Contemporary Educational Psychology, 18, 162–185.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitendra Pillay.

Additional information

This study was supported by a Queensland University of Technology Seeding Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pillay, H., Boles, W.W. & McCrindle, A.R. Understanding the use of domain and task knowledge in the interpretation of graphical displays. Eur J Psychol Educ 16, 491–508 (2001). https://doi.org/10.1007/BF03173194

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03173194

Key words

Navigation