Skip to main content

Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence

Abstract

Passive and active visuospatial working memory (VSWM) were investigated in relation to maths performance. The mental rotation task was employed as a measure of active VSWM whereas passive VSWM was investigated using a modified Corsi Blocks task and a matrix pattern task. The Raven Progressive Matrices Test measured fluid intelligence. A total of 128 students, aged 15–16, served as participants. Fluid intelligence and passive VSWM accounted for variance in overall maths performance. Active VSWM exhibited significant correlations with maths measures, but in a series of regression analyses most of its effect was observed to be mediated by fluid intelligence. Different subscores of mathematical skills (geometry, word problems, and mental arithmetic) were accounted for by fluid intelligence and different measures of VSWM. The educational implications of the results are discussed.

Résumé

Les mémoires de travail visuo-spatiales passive et active (MTVS) ont été examinées en relation avec les performances en mathématiques. La tâche de rotation mentale a été examinée en utilisant un test “blocs de Corsi” modifié et un test de matrices. Le test des matrices progressives de Raven mesurait l’intelligence fluide. Un total de 128 élèves, âgés de 15 à 16 ans, ont participé. L’intelligence fluide et la MTVS passive étaient en cause pour les différences de performances en mathématiques de façon générale. La MTVS active a mis en avant des corrélations significatives avec les mesures de mathématiques, mais dans une série d’analyses de régression on a observé que la plupart de ses effets était transmis par l’intelligence fluide. Différents sous-résultats en capacités mathématiques (géométrie, problèmes de mots et arithmétique mentale) étaient expliqués par l’intelligence fluide et par différentes mesures de MTVS. Les implications éducationnelles sont discutées.

This is a preview of subscription content, access via your institution.

References

  1. Ashcraft, M.H. (1996). Cognitive psychology and simple arithmetic: A review and summary of new directions. In B. Butterworth (Ed.),Mathematical cognition 1 (pp. 3–34). Hove, UK: Psychology Press.

    Google Scholar 

  2. Atkinson, R.C., & Shiffrin, R.M. (1968). Human memory: A proposed system and its control processes. In K.W. Spence & J.T. Spence (Eds.),The psychology of learning and motivation: advances in research and theory (vol. 2, pp. 92–122). New York: Academic Press.

    Google Scholar 

  3. Bachot, J., Gevers, W., Fias, W., & Roeyers, H. (2005). Number sense in children with visuospatial disabilities: Orientation of the mental number line.Psychology Science, 47, 172–183.

    Google Scholar 

  4. Baddeley, A.D. (1986).Working memory. Oxford: Oxford University Press.

    Google Scholar 

  5. Baddeley, A.D. (1996). Exploring the central executive.Quarterly Journal of Experimental Psychology, 49, 5–28.

    Article  Google Scholar 

  6. Baddeley, A.D. (1997).Human memory: Theory and practice (rev. ed.) Hove, UK: Psychology Press.

    Google Scholar 

  7. Baddeley, A.D. (2000). The episodic buffer: A new component of working memory?Trends in Cognitive Sciences, 4, 417–423.

    Article  Google Scholar 

  8. Baddeley, A.D., & Hitch, G.J. (1974). Working memory. In G. Bower (Ed.),The psychology of learning and motivation (vol. 8, pp. 47–90). New York: Academic Press.

    Google Scholar 

  9. Baddeley, A.D., & Logie, R.H. (1999). Working memory: The multiple-component model. In A. Miyake & P. Shah (Eds.),Models of working memory (pp. 28–61).

  10. Battista, M.T. (1990). Spatial visualization and gender differences in high school geometry.Journal for Research in Mathematics Education, 21, 47–60.

    Article  Google Scholar 

  11. Bull, R., & Johnston, R.S. (1997). Children’s arithmetical difficulties: Contributions from processing speed, item identification, and short-term memory.Journal of Experimental Child Psychology, 65, 1–24.

    Article  Google Scholar 

  12. Bull, R., Johnston, R.S., & Roy, J.A. (1999). Exploring the roles of the visuospatial sketch pad and central executive in children’s arithmetical skills: Views from cognition and developmental neuropsychology.Developmental Neuropsychology, 15, 421–442.

    Article  Google Scholar 

  13. Butcher, H.J. (1968).Human Intelligence. Its Nature and Assessment. London: Methuen.

    Google Scholar 

  14. Carpenter, P.A., Just, M.A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test.Psychological Review, 97, 404–431.

    Article  Google Scholar 

  15. Casey, M.B., Nuttall, R.L., & Pezaris, E. (1997). Mediators of gender differences in mathematics college entrance test scores: A comparison of spatial skills with internalized beliefs and anxieties.Developmental Psychology, 33, 669–680.

    Article  Google Scholar 

  16. Cattell, R.B. (1971).Abilities: Their growth, structure, and action. Boston: Houghton Mifflin.

    Google Scholar 

  17. Clements, D.H., & Battista, M.T. (1992). Geometry and spatial reasoning. In Douglas A. Grouws (Ed.),Handbook of Research on mathematics Teaching and Learning. New York: Macmillan Publishing Company.

    Google Scholar 

  18. Colom, R., Flores-Mendoza, C., & Rebollo, I. (2003). Working memory and intelligence.Personality and Individual Differences, 34, 33–39.

    Article  Google Scholar 

  19. Cornoldi, C., & Vecchi, T. (2003).Visuo-spatial Working Memory and Individual Differences. Essays in Cognitive Psychology. Hove: Psychology Press.

    Google Scholar 

  20. Cornoldi, C., Rigoni, F., Tressoldi, P.E., & Vio, C. (1999). Imagery deficits in nonverbal learning disabilities.Journal of Learning Disabilities, 32, 48–63.

    Article  Google Scholar 

  21. Daneman, M., & Carpenter, P.A. (1980). Individual differences in working memory and reading.Journal of Verbal Learning and Verbal Behavior, 19, 450–466.

    Article  Google Scholar 

  22. Deary, I.J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement.Intelligence, 35, 13–21.

    Article  Google Scholar 

  23. DeShon, R.P., Chan, D., & Weissbein, D.A. (1995). Verbal overshadowing effects on Raven’s Advanced Progressive Matrices: Evidence for multidimensional performance determinants.Intelligence, 21, 135–155.

    Article  Google Scholar 

  24. De Rammelaere, S., Stuyven, E., & Vandierendonck, A. (1999). The contribution of working memory resources in the verification of simple mental arithmetic sums.Psychological Research, 62, 72–77.

    Article  Google Scholar 

  25. De Rammelaere, S., Stuyven, E., & Vandierendonck, A. (2001). Verifying simple arithmetic sums and products: Are the phonological loop and the central executive involved?Memory & Cognition, 29, 267–273.

    Google Scholar 

  26. DeStefano, D., & LeFevre, J.-A. (2004). The role of working memory in mental arithmetic.European Journal of Cognitive Psychology, 16, 353–386.

    Article  Google Scholar 

  27. Engle, R.W., Tuholski, S.W., Laughlin, J.E., & Conway, A.R.A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach.Journal of Experimental Psychology, General, 128, 309–331.

    Article  Google Scholar 

  28. Floyd, R.G., Evans, J.J., & McGrew, K.S. (2003). Relations between measures of Cattell-Horn-Carroll (CHC) cognitive, abilities and mathematics achievement across the school-age years.Psychology in the Schools, 40, 155–171.

    Article  Google Scholar 

  29. Gathercole, S.E., Pickering, S.J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age.Developmental Psychology, 40, 177–190.

    Article  Google Scholar 

  30. Geary, D.C. (1994).Children’s mathematical development: Research and practical applications. Washington, DC: American Psychological Association.

    Book  Google Scholar 

  31. Geary, D.C. (2004). Mathematics and learning disabilities.Journal of Learning Disabilities, 37, 4–15.

    Article  Google Scholar 

  32. Haavisto, M.-L., & Lehto, J.E. (2004). Fluid spatial and crystallized intelligence in relation to domain-specific working memory: A latent-variable approach.Learning and Individual Differences 15, 1–21.

    Article  Google Scholar 

  33. Healy, A. F. & Nairne, J. S. (1985). Short-term memory processes in counting.Cognitive Psychology, 17, 417–444.

    Article  Google Scholar 

  34. Heathcote, D. (1994). The role of visuo-spatial working memory in mental addition of multi-digit addends.Current Psychology, 13, 207–245.

    Google Scholar 

  35. Henry, L.A., & MacLean, M. (2003). Relationships between working memory, expressive vocabulary and arithmetical reasoning in children with and without intellectual disabilities.Educational and Child Psychology, 20, 51–64.

    Google Scholar 

  36. Hitch, G.J. (1978). The role of short-term working memory in mental arithmetic.Cognitive Psychology, 10, 302–323.

    Article  Google Scholar 

  37. Holmes, J., & Adams, J.W. (2006). Working memory and children’s mathematical skills: Implications for mathematical development and mathematics curricula.Educational Psychology, 26, 339–366.

    Article  Google Scholar 

  38. Horn, J.L. (1968). Organization of abilities and the development of intelligence.Psychological Review, 75, 242–259.

    Article  Google Scholar 

  39. Ikäheimo, H., Putkonen, H., & Voutilainen, E. (1988).Matematiikan keskeisen oppiaineksen kokeet luokille 1–9. Helsinki: Opperi. [in Finnish]

    Google Scholar 

  40. Jarvis, H., & Gathercole, S. (2003). Verbal and non-verbal working memory and achievements on National Curriculum tests at 11 and 14 years of age.Educational and Child Psychology, 20, 123–140.

    Google Scholar 

  41. Jensen, A.J. (1980).Bias in Mental Testing. London: Methuen.

    Google Scholar 

  42. Johnson, W., & Bouchard Jr., T.J. (2005). The structure of human intelligence: It is verbal, perceptual, and image rotation (VPR), not fluid and crystallized.Intelligence, 33, 393–416.

    Article  Google Scholar 

  43. Kosslyn, S.M., Margolis, J.A., Barrett, A.M., Goldknopf, E.J., & Daly, P.F. (1990). Age differences in imagery abilities.Child Development, 61, 995–1010.

    Article  Google Scholar 

  44. Kuusinen, J., & Leskinen, E. (1986). Intelligence and school achievement,Psykologia, 21, 243–248. [in Finnish with English summary]

    Google Scholar 

  45. Kyllonen, P.C., & Christal, R.E. (1990). Reasoning ability is (little more than) working-memory capacity?!Intelligence, 14, 389–433.

    Article  Google Scholar 

  46. Kyttälä, M. (in press). Visuospatial working memory in adolescents with poor performance in mathematics: Variation depending on reading skills.Educational Psychology.

  47. Kyttälä, M., Aunio, P., Lehto, J.E., Van Luit, J., & Hautamäki, J. (2003). Visuospatial working memory and early numeracy.Educational and Child Psychology, 20, 65–76.

    Google Scholar 

  48. Lee, K., & Kang, S. (2002). Arithmetic operation and working memory: Differential suppression in dual tasks.Cognition, 83, B63-B68.

    Article  Google Scholar 

  49. Lee, K., Ng, S.-F., Ng, E.-L., & Lim, Z.-Y. (2004). Working memory and literacy as predictors of performance on algebraic word problems.Journal of Experimental Child Psychology, 89, 140–158.

    Article  Google Scholar 

  50. Lemaire, P., Abdi, H., & Fayol, M. (1996). The role of working memory resources in simple cognitive arithmetic.European Journal of Cognitive Psychology, 8, 73–103.

    Article  Google Scholar 

  51. Logie, R.H. (1993). Working memory in everyday cognition. In G.M. Davies & R.H. Logie (Eds.),Memory in everyday life (pp. 173–218). Amsterdam: North-Holland.

    Chapter  Google Scholar 

  52. Logie, R.H., & Baddeley, A.D. (1987). Cognitive processes in counting.Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 310–326.

    Article  Google Scholar 

  53. Logie, R.H., & Marchetti, C. (1991). Visuo-spatial working memory: Visual, spatial or central executive? In R.H. Logie & M. Denis (Eds.),Mental images in human cognition (pp. 105–115). Amsterdam: North-Holland.

    Chapter  Google Scholar 

  54. Logie, R.H., & Pearson, D.G. (1997). The inner eye and the inner scribe of visuo-spatial working memory: Evidence from developmental fractionation.European Journal of Cognitive Psychology, 9, 241–257.

    Article  Google Scholar 

  55. Logie, R.H., Gilhooly, K.J., & Wynn, V. (1994). Counting on working memory in arithmetic problem solving.Memory and Cognition, 22, 395–410.

    Google Scholar 

  56. Loring-Meier, S., & Halpern, D.F. (1999). Sex differences in visuospatial working memory: Components of cognitive processing.Psychonomic Bulletin & Review, 6, 464–471.

    Google Scholar 

  57. Maybery, M.T., & Do, N. (2003). Relationships between facets of working memory and performance on a curriculumbased mathematics test in children.Educational and Child Psychology, 20, 77–92.

    Google Scholar 

  58. McKenzie, B., Bull, R., & Gray, C. (2003). The effects of phonological and visuospatial interference on children’s arithmeti cal performance.Educational and Child Psychology, 20, 93–108.

    Google Scholar 

  59. McLean, J.F., & Hitch, G.J. (1999). Working memory impairments in children with specific arithmetic learning difficulties.Journal of Experimental Child psychology, 74, 240–260.

    Article  Google Scholar 

  60. Milner, B. (1971). Interhemispheric differences in the localization of psychological processes in man.British Medical Bulletin: Cognitive Psychology, 27, 272–277.

    Google Scholar 

  61. Miyake, A., & Shah, P. (Eds.). (1999).Models of working memory: Mechanisms of active maintenance and executive control. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  62. Miyake, A., Friedman, N.P., Rettinger, D.A., Shah, P., & Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent variable analysis.Journal of Experimental Psychology: General, 130, 621–640.

    Article  Google Scholar 

  63. Neçka, E. (1992). Cognitive analysis of intelligence: The significance of working memory processes.Personality and Individual Differences, 9, 1031–1046.

    Article  Google Scholar 

  64. Ozer, D.J. (1987). Personality, intelligence, and spatial visualization: Correlates of mental rotations test performance.Journal of Personality and Social Psychology, 53, 129–134.

    Article  Google Scholar 

  65. Passolunghi, M.C., & Siegel, L.S. (2004). Working memory and access to numerical information in children with disability in mathematics.Journal of Experimental Child Psychology, 88, 348–367.

    Article  Google Scholar 

  66. Pazzaglia, F., & Cornoldi, C. (1999). The role of distinct components of visuo-spatial working memory in the processing of texts.Memory, 7, 19–41.

    Article  Google Scholar 

  67. Pickering, S.J., Gathercole, S.E., Hall, M., & Lloyd, S.A. (2001). Development of memory for pattern and path: Further evidence for the fractionation of visuo-spatial memory.Quarterly Journal of Experimental Psychology, 54, 397–420.

    Article  Google Scholar 

  68. Quaiser-Pohl, C., & Lehmann, W. (2002). Girls’ spatial abilities: Charting the contributions of experiences and attitudes in different academic groups.British Journal of Educational Psychology, 72, 245–260.

    Article  Google Scholar 

  69. Raven, J. (2000). The Raven’s Progressive Matrices: Change and stability over culture and time.Cognitive Psychology, 41, 1–48.

    Article  Google Scholar 

  70. Raven, J.C., Court, J.H., & Raven, J. (1992).Standard Progressive Matrices. Oxford: Oxford Psychologists Press.

    Google Scholar 

  71. Reuhkala, M. (2001). Mathematical skills in ninth-graders: Relationship with visuo-spatial abilities and working memory.Educational Psychology, 21, 387–399.

    Article  Google Scholar 

  72. Schweizer, K., & Moosbrugger, H. (2004). Attention and working memory as predictors of intelligence.Intelligence, 32, 329–347.

    Article  Google Scholar 

  73. Shah, P., & Miyake, A. (1996). The separability of working memory resources for spatial thinking and language processing: An individual differences approach.Journal of Experimental Psychology: General, 125, 4–27.

    Article  Google Scholar 

  74. Shepard, R.N., & Metzler, J. (1971). Mental rotation of three-dimensional objects.Science, 171, 701–703.

    Article  Google Scholar 

  75. Siegel, L.S. (1994). Working memory and reading: A life-span perspective.International Journal of Behavioral Development, 17, 109–124.

    Google Scholar 

  76. Siegel, L.S., & Ryan, E.B. (1989). The development of working memory in normally achieving and subtypes of learning disabled children.Child development, 60, 973–980.

    Article  Google Scholar 

  77. Skemp, R.R. (1986).The psychology of learning mathematics, London: Penguin Books.

    Google Scholar 

  78. Snow, R.E., & Yalow, E. (1982) Education and intelligence. In R.J. Sternberg (Ed.),Handbook of Human Intelligence (pp. 493–585). Cambridge: Cambridge University Press.

    Google Scholar 

  79. Spearman, C. (1927).The abilities of man: Their nature and measurement. London: Macmillan.

    Google Scholar 

  80. Spinath, B., Spinath, F.M., Harlaar, N., & Plomin, R. (2006). Predicting school achievement from general cognitive ability, self-perceived ability, and intrinsic value.Intelligence, 34, 363–374.

    Article  Google Scholar 

  81. Swanson, H.L. (1993). Working memory in learning disability subgroups.Journal of Experimental Child Psychology, 56, 87–114.

    Article  Google Scholar 

  82. Swanson, H.L. (1999). What develops in working memory? A life span perspective.Developmental Psychology, 35, 986–1000.

    Article  Google Scholar 

  83. Süß, H.-M., Oberauer, K., Wittman, W.W., Wilhelm, O., & Schulze, R. (2002). Working-memory capacity explains reasoning ability — and a little bit more.Intelligence, 30, 261–288.

    Article  Google Scholar 

  84. Tabachnick, B.G., & Fidell, L.S. (2001).Using Multivariate Statistics (4th ed.). Boston: Allyn and Bacon.

    Google Scholar 

  85. Trbovich, P.L., & LeFevre, J.-A. (2003). Phonological and visual working memory in mental addition.Memory & Cognition, 31, 738–745.

    Google Scholar 

  86. Undheim, J.O., & Gustafsson, J.-E. (1987). The hierarchical organization of cognitive abilities: Restoring general intelligence through the use of linear structural relations (LISREL).Multivariate Behavioral Research, 22, 149–171.

    Article  Google Scholar 

  87. Vandenberg, S.G., & Kuse, A.R. (1978). Mental rotations, a group test of three-dimensional spatial visualization.Perceptual and Motor Skills, 47, 599–604.

    Google Scholar 

  88. Wilson, K.M., & Swanson, L. (2001). Are mathematics disabilities due to a fdomain-general or a domain-specific working memory deficit?Journal of Learning Disabilities, 34, 237–248.

    Article  Google Scholar 

  89. Wilson, J.T.L., Scott, J.H., & Power, G. (1987). Developmental differences in the span of visual memory for pattern.British Journal of Developmental Psychology 5, 249–255.

    Google Scholar 

  90. Zorzi, M., Priftis, K., & Umiltà. (2002). Neglect disrupts the mental number line.Nature, 417, 138.

    Article  Google Scholar 

  91. Zorzi, M., Priftis, K., Meneghello, F., Marenzi, R., & Umiltà. (2006). The spatial representation of numerical and nonnumerical sequences: Evidence from neglect.Neuropsychologia, 44, 1061–1067.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kyttälä, M., Lehto, J.E. Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence. Eur J Psychol Educ 23, 77 (2008). https://doi.org/10.1007/BF03173141

Download citation

Key words

  • Mathematical skills
  • Non-verbal intelligence
  • Visuospatial skills
  • Visuospatial working memory