Skip to main content
Log in

An analysis of knowledge representation of students in electronic problem tasks

  • Published:
European Journal of Psychology of Education Aims and scope Submit manuscript

Abstract

This paper investigates the nature of learning outcomes of thirty six electronics students who were receiving training under the recent reform processes advocated by the Australian government. The reform processes place great emphasis on macro issues thereby unintentionally relegating the micro issues, such as learning in the classroom, to a lower priority. Such misdirected emphasis may hinder the development of an intelligent workforce. A multi method approach which involved a problem task, interviews and concept maps was used to establish the learning outcomes. The learning outcomes were analysed to identify the nature of students’ knowledge structures and the sophistication in their understanding of the topic “Frequency Division Multiplexing”. Students’ knowledge structures and levels of understanding were compared with those generated by 3 experts. The findings indicated a low level of understanding and a very lean knowledge structure with limited relational links to other elements in the given information. Furthermore, a comparison of students’ knowledge structures and levels of understanding was made between students with more than 2 years work experience and those coming to their course straight from secondary schools. The findings of this analysis did not support the argument that work experience enriches students’ knowledge and understanding, as students with no work experience performed better then the work experience students. Thus, there needs to be more empirical research on the nature of real work experience routines and how it affects learning rather than theorising on ideal work situations.

Résumé

Cet article examine les effets, en termes d’apprentissage, d’une récente réforme de la formation des étudiants en électronique en Australie. La réforme met l’accent sur des facteurs macroscopiques, reléguant involontairement les facteurs plus locaux, comme l’apprentissage en classe, au second plan. Une telle erreur stratégique peut compromettre le succès d’un projet de fomation. Une approche multiméthode, incluant une tâche de résolution de problème, des interviews et l’investigation de cartes conceptuelles, a été employée dans l’évaluation des effets. Cette évaluation de l’apprentissage visait à l’identification des structures de connaissance et du degré de sophistication de la compréhension dans le domaine “Frequency Division Multiplexing”. Les connaissances et le degré de compréhension des étudiants furent comapres à ceux produits par 3 experts. Les résultats indiquent un bas niveau de compréhension et une structure de connaissance très pauvre, peu de liens unissant les différents éléments d’une information. En outre, une comparaison des structures de connaissances disponibles a été effectuée entre des étudiants fraîchement arrivés de l’enseignement secondaire et des étudiants ayant eu au ninimum une expérience de deux années de travail. Les résultats de cette comparaison ne permettent pas de conclure que l’expérience professionnelle enrichit les connaissances et la compréhension, les étudiants sans cette expérience réussissant rnieux que les autres. Il est donc urgent d’entreprendre des recherches empiriques sur les effets réels de l’expérience de travail plutôt que de théoriser sur les effets de situations de travail idéales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bain, J. (1994, September).Understanding by learning or learning by understanding: How shall we teach? Paper presented at the meeting of the Faculty of Education, Griffith University, Queensland, Australia.

  • Biggs, J. (1989). Approaches to the enhancement of tertiary teaching.Higher Education Research and Development, 8, 7–25.

    Article  Google Scholar 

  • Biggs, J. (1991). Approaches to learning in secondary and tertiary students in Hong Kong: Some comparative studies.Educational Research Journal, 6, 27–39.

    Google Scholar 

  • Biggs, J., & Collis, K.F. (1982).Evaluating the quality of learning: The SOLO taxonomy (Structure of the Observed Learning Outcomes). New York: Academic Press.

    Google Scholar 

  • Boulton-Lewis, G.M. (1994). Tertiary students’ knowledge of their own learning and a SOLO Taxonomy.Higher Education, 28, 387–402.

    Article  Google Scholar 

  • Boulton-Lewis, G.M., & Dart, B.C. (1994). Assessing students’ knowledge of learning: A comparison of data collection methods. In G. Gibbs (Ed.).Improving Student Learning: Theory and Practice (pp. 263–277). Oxford: OCSD.

    Google Scholar 

  • Bowden, J.A., & Masters, G.N. (1993).Implications for higher education of a competency-based approach to education and training. Canberra: Australian Government Publishing Service.

    Google Scholar 

  • Brown, J.S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning.Educational Researcher, 18, 32–42.

    Google Scholar 

  • Burns, R.B. (1991).Introduction to research methods. South Melbourne: Addison Wesley Longman Australia.

    Google Scholar 

  • Carmichael, L. (1992).Australian vocational certificate training system. Canberra: Australian Government Publishing Service.

    Google Scholar 

  • Chi, M., Feltovich, P., & Glaser, R. (1981). Categorisation and representations of physics problems by experts and novices.Cognitive Science, 5, 121–152.

    Article  Google Scholar 

  • Cognition and Technology Group at Vanderbilt. (1993). Anchored instruction and situated cognition revisited.Educational Technology, March, 52–70.

    Google Scholar 

  • Collins, A.M., & Quillian, M.R. (1970). Retrieval time from semantic memory.Journal of Verbal Learning and Verbal Behaviour, 8, 240–248.

    Article  Google Scholar 

  • Cooper, L.A. (1988). The role of spatial representations on complex problem solving. In S. Schiffer & S. Steele (Eds.),Cognition and representation (pp. 53–86). Boulder, CO: Westview Press.

    Google Scholar 

  • Eysenck, H.J. (1990). Behaviour therapy, cognition and the use of imagery.Journal of Mental Imagery, 14, 215–220.

    Google Scholar 

  • Finn, B. (Chair) (1991).Young people’s participation in post-compulsory education and training. Report of the Australian Education Council Review Committee. Canberra: Australian Government Publishing Service.

    Google Scholar 

  • Gott, S.P., Kane, R.S., & Lesgold, A. (1994).Tutoring for transfer of technical competence: Coached apprenticeship as a form of constructivist training. Texas: Brooks Airforce Base.

    Google Scholar 

  • Heller, J.I., & Greeno, J.G. (1979). Information processing analysis of mathematical problem-solving. In R.W. Tyler & S.H. White (Eds.),Testing, teaching and learning (pp. 113–135). Washington, DC: The National Institute of Education.

    Google Scholar 

  • Larkin, J. (1985). Understanding, problem representations, and skill in physics. In S.F. Chipman, J.W. Segal, & R. Glaser (Eds.),Thinking and learning skills Vol 2: Research and open questions (pp. 141–159). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Markham, K.M., Mintzes, J.J., & Jones, M.G. (1994). The concept map as a research and evaluation tool: Further evidence of validity.Journal of Research on Science Teaching, 31, 91–101.

    Article  Google Scholar 

  • Mayer, E. (Chair) (1992).Employment related key competencies: A proposal for consultation. The mayer Committee, Ministry of Education and Training, Melbourne. Canberra: Australian Government Publishing Service.

    Google Scholar 

  • Metzler, J., & Shepard, R.N. (1982). Rotation of three-dimensional objects. In R.N. Shepard & L.A. Cooper (Eds.),Mental images and their transformation (pp. 25–71). London: MIT Press.

    Google Scholar 

  • Newell, A., & Simon, H.A. (1972).Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Novak, J.D., & Gowin, D.B. (1984).Learning how to learn. Cambridge: Cambridge University Press.

    Google Scholar 

  • Novak, J.D., Gowin, D.B., & Johansen, G.T. (1983). The use of concept mapping and knowledge mapping with junior high school students.Science Education, 67, 625–645.

    Article  Google Scholar 

  • Perkins, D.N., & Salomon, G. (1989). Are cognitive skills context bound?Educational Researcher, 18, 16–23.

    Google Scholar 

  • Pillay, H. (1994). Cognitive load and mental rotation: Structuring orthographic projection to enhance learning and problem solving.Instructional Science, 22, 91–113.

    Article  Google Scholar 

  • Pillay, H. (1995). Restructuring instructional material in vocational education to enhance learning.Australia and New Zealand Journal of Vocational Education Research, 3, 72–86.

    Google Scholar 

  • Smith, M. (1992). Experts and the organisation of knowledge: Unexpected differences among generic counselors, faculty and students on problem categorization tasks.Journal of Research in Science Teaching, 29, 179–205.

    Article  Google Scholar 

  • Vargas, E.M., & Alvarez, H.J. (1992). Mapping out students’ abilities.Science Scope, 15, 41–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work reported in this paper was supported by a Queensland University of Technology meritorious grant to the author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pillay, H.K. An analysis of knowledge representation of students in electronic problem tasks. Eur J Psychol Educ 14, 325–338 (1999). https://doi.org/10.1007/BF03173118

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03173118

Key words

Navigation