Skip to main content
Log in

Spatial ability and transformational geometry

  • Published:
European Journal of Psychology of Education Aims and scope Submit manuscript

Abstract

New technologies in education are placing more emphasis upon visual and spatial skills, those required to inspect, encode, transform, and construct information in visual displays. They do this by presenting students with learning material embedded in complex visual displays and hypermedia, and by requiring students to navigate through virtual space. These developments make it important for us to learn more about the underlying nature of visuospatial ability, how it is related to academic performance, and how it can be improved.

This paper explores these issues in the context of instruction in transformational geometry upon geometry performance and spatial ability of Grade 7/8 students. The instructional conditions were (a) a traditional textbook approach involving paper-and-pencil tasks and verbal instruction (Traditional Group), and (b) an approach incorporating object manipulation, and visual imagery, which was designed to encourage spatial thinking (Spatial Group). Multiple regression results indicated that posttest geometry performance was predicted by pretest geometry, pretest spatial ability, and the interaction of pretest geometry and instructional condition; the interaction indicated that high prior knowledge subjects performed better in the Spatial group, low prior knowledge subjects in the Traditional group. Posttest spatial ability was predicted by handedness, pretest geometry, pretest spatial ability, and the interaction of pretest spatial ability and handedness; the interaction indicated that less right-handed subjects of low spatial ability improved on spatial ability more than their more right-handed peers.

With respect to geometry instruction, we suggest that some students may require prior verbal instruction to build up a knowledge base of spatial and geometrical concepts. More broadly, these results raise concerns about the needs of students who may be disadvantaged in complex visual instructional settings requiring sophisticated visuospatial skills. We suggest that these skills are improvable to some extent, but that this will require deliberate instruction.

Résumé

Les nouvelles technologies en éducation ont mis surtout l’accent sur les compétences visuelles et spatiales, celles requises pour inspecter, encoder, transformer, et construire de l’information dans les documents visuels. Ces développements sont importants pour nous afin d’en savoir plus au sujet de la nature de la compétence visuo-spatiale sous-jacente, comment elle est liée à la performance scolaire et comment elle peut être améliorée.

Le travail présenté étudie les effets de deux types d’instruction in géométrie transformationnelle sur la performance en géométrie et l’habilité spatiale d’élèves de septième et huitième niveaux scolaires. Les conditions d’instruction ont été (a) une méthode traditionnelle d’utilisation du livre scolaire impliquant des tâches papier-crayon et des instructions verbales (Groupe Traditionnel), et (b) une méthode introduisant de la manipulation d’objet et de l’imagerie visuelle, supposée encourager la pensée spatiale (Groupe Spatial). Les résultats de l’analyse de régression multiple montrent que la performance au post-test de géométrie est prédite par les pré-tests de géométrie, de compétence spatiale, et l’interaction entre pré-test de géométrie et condition d’instruction; l’interaction indique que, dans le groupe spatial, les sujets qui ont les meilleurs performances sont ceux ayant un niveau de connaissance initial élevé, alors que, dans le groupe traditionnel, ce sont ceux ayant un faible niveau initial. La compétence spatiale en post-test est prédite par la latéralité, le pré-test de géométrie, le pré-test de compétence spatiale et l’interaction entre compétence spatiale et l’habileté manuelle; l’interaction indique que les moins droitiers de faible compétence spatiale améliorent davantage leur compétence spatiale que leurs condisciples plus droitiers.

En ce qui concerne les conditions d’instruction en géométrie, certains élèves peuvent avoir besoin d’instructions verbales préalables pour développer une base de connaissance des concepts spatiaux et géométriques. Plus largement, ces résultats soulèvent des questions au sujet des besoins des étudiants qui peuvent être désavantagés dans des ensembles complexes d’instructions visuelles qui requièrent des compétences visuo-spatiales sophistiquées. Les auteurs suggèrent que ces compétences sont améliorables jusqu’à un certain point, mais que cela requiert un entraînement délibéré.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Battista, M.T. (1990). Spatial visualization and gender differences in high school geometry.Journal for Research in Mathematics Education, 21, 47–60.

    Article  Google Scholar 

  • Bishop, A.J. (1989). Review of research on visualization in mathematics education.Focus on Learning Problems in Mathematics, 11, 7–15.

    Google Scholar 

  • Boulter, D.R., & Kirby, J.R. (1994). Identification of strategies employed by students in solving transformational geometry problems.Journal of Educational Research, 87, 298–303.

    Google Scholar 

  • Burnett, S.A., Lane, D.M., & Dratt, L.M. (1982). Spatial ability and handedness.Intelligence, 6, 57–69.

    Article  Google Scholar 

  • Carroll, J.B. (1993).Human cognitive abilities: A survey of factor-analytic studies. Cambridge UK: Cambridge University Press.

    Google Scholar 

  • Casey, M.B., & Brabeck, M.M. (1990). Women who excel on a spatial task: Proposed genetic and environmental factors.Brain and Cognition, 12, 73–84.

    Article  Google Scholar 

  • Casey, M.B., Brabeck, M.M., & Ludlow, L.H. (1986). Familial handedness and its relation to spatial ability following strategy instructions.Intelligence, 10, 389–406.

    Article  Google Scholar 

  • Cochran, K.F., & Wheatley, G.H. (1982, March).Cognitive strategies in spatial performance. Paper presented at the Annual Meeting of the American Educational Research Association, New York.

  • Connelly, R.D., Lesage, J.W., Martin, J.D., O’Shea, T., Sharp, J.N.C., Beattie, R.H., Bilous, F., Bober, W.C., Bright, B., Drost, D.R., Hope, J.A., Lee, R., & Tossell, S. (1987).Journeys in math 8. Toronto, ON: Ginn Publishing Canada, Inc.

    Google Scholar 

  • Eisenberg, T., & Dreyfus, T. (Eds.). (1989). Visualization and mathematics education.Focus on Learning Problems in Mathematics, 11, 1–76.

    Google Scholar 

  • Ekstrom, R.B., French, J.B., Harman, H.H., & Dermen, D. (1976).Kit of factor-referenced cognitive tests. Princeton, NJ: Educational Testing Service.

    Google Scholar 

  • Gaulin, C. (1985). The need for emphasizing various graphical representations of 3-dimensional shapes and relations. In L. Streefland (Ed.),Proceedings of the Ninth International Conference for the Psychology of Mathematics Education (Vol. 2, pp. 53–71). Noordwijkehout: OW & OC, State University of Utrecht.

    Google Scholar 

  • Goldstein, D., Haldane, D., & Mitchell, C. (1990). Sex differences in visual-spatial ability: The role of performance factors.Memory and Cognition, 18, 546–550.

    Google Scholar 

  • Hyde, J.S., Fennema, E., & Lamon, S.J. (1990). Gender differences in mathematics performance: A meta-analysis.Psychological Bulletin, 107, 139–155.

    Article  Google Scholar 

  • Kirby, J.R. (1990).Spatial cognition in education. Paper presented at the International Congress of Applied Psychology, Kyoto, Japan.

  • Linn, M.C., & Petersen, A.C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis.Child Development, 56, 1479–1498.

    Article  Google Scholar 

  • Maccoby, E., & Jacklin, C.N. (1974). The psychology of sex differences. Stanford, CA: Stanford University Press.

    Google Scholar 

  • McGee, M.G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences.Psychological Bulletin, 86, 889–919.

    Article  Google Scholar 

  • McGee, M.G. (1982, August).Cognitive sex differences and their practical implications. Paper presented at the Annual Meeting of the American Psychological Association. Washington, DC.

  • Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory.Neuropsychologia, 9, 97–113.

    Article  Google Scholar 

  • Ontario Ministry of Education (1985).Mathematics: Intermediate and senior divisions. Toronto, Ontario: Author.

    Google Scholar 

  • Sharp, J.N.C. (Ed.). (1982).Starting points in mathematics 8. Toronto, ON: Ginn & Company.

    Google Scholar 

  • Silver, E.A. (1987). Foundations of cognitive theory and research for mathematics problem-solving instruction. In A. Schoenfeld (Ed.),Cognitive science and mathematics education (pp. 33–60). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  • Voyer, D., & Bryden, M.P. (1990). Gender, level of spatial ability and lateralization of mental rotation.Brain and Cognition, 13, 18–29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An earlier version of this paper was presented to the European Association for Research in Learning and Instruction, Athens, Greece, 26–30 August 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirby, J.R., Boulter, D.R. Spatial ability and transformational geometry. Eur J Psychol Educ 14, 283–294 (1999). https://doi.org/10.1007/BF03172970

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03172970

Key words

Navigation