Skip to main content
Log in

Birefringence of crystals and its temperature-variation

Part I. Calcite and aragonite

  • Published:
Proceedings of the Indian Academy of Sciences - Section A Aims and scope Submit manuscript

Summary

It is suggested that the birefringence of crystalline bodies can be explained as arising from the existence of polarised electronic transitions, so that the probability of transition is different for different directions of the incident electric vector. As a result, in the dispersion formulæ for the three principal refractive indices of a biaxial crystal, the oscillator-strengths will be different, although the dispersion frequencies are the same. The application of the idea to the cases of calcite and aragonite (two strongly birefringent crystals) enables one to construct dispersion formulæ involving three ultra-violet frequencies at 1535, 1000 and 500 Å.U. The formulæ, which fit the dispersion data for both rays of calcite from 0·2 to 3 μ, show that a large part of the birefringence arises from the large anisotropy in the strength of the nearest ultra-violet frequency at 1535 Å.U. A similar result is also found for aragonite.

The dispersion formulæ are also successful in explaining the thermooptic behaviour of both calcite and aragonite, when they are utilised in the author’s theory of thermo-optic behaviour, which has so far been applied only for isotropic solids. For anisotropic solids, an additional principle has to be used,viz., that, while the total oscillator strength does not alter with temperature, the individual strengths along the three principal directions can change, resulting in a mutual transfer. It is suggested that this transfer is related to the differences in thermal expansion along the three directions, which finds some support in the case of aragonite. A physical explanation of the transfer can be found, wholly or partly, in the tilting oscillations of the CO3 ion.

The theory is successful in explaining the remarkable fact that, whiledn/dt for both indices of calcite is positive, that for all the indices of aragonite is negative, the difference being attributable to the much larger coefficient of thermal expansion of the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bragg, W. L.Proc. Roy. Soc.,A, 1924,105, 370.

    Article  Google Scholar 

  2. BornAnn. d. Phys., 1918,55, 177.Enz. d. Math. Wiss., 1922,5, pt. 3, 529.

    Article  Google Scholar 

  3. EwaldAnn. d. Phys., 1916,49, 1, 117.

    Article  Google Scholar 

  4. Hilsch and PohlZeits. f. Phys., 1930,59, 812.

    Article  Google Scholar 

  5. KopcewiczJourn. de Phys., 1937,8, 6.

    Google Scholar 

  6. Kurtz and WardJourn. Frank. Inst., 1937,224, 697.

    Article  Google Scholar 

  7. LiebischPhysikalische Krystallographie, 1891.

  8. Liebisch and RubensSitzber. Preuss. Acad., 1919, 198.

  9. MarbachDiss. Leipzig, 1913.

  10. MicheliAnn. d. Phys., 1902,7, 772.

    Article  Google Scholar 

  11. MühlheimsZeits. f. Kryst., 1888,14, 202.

    Google Scholar 

  12. NedungadiProc. Ind. Acad. Sci. A, 1939,8, 397.

    Google Scholar 

  13. NyswanderPhys. Rev., 1909,28, 291.

    Google Scholar 

  14. OffretBull. Soc. Min., 1890,13, 405.

    Google Scholar 

  15. Ornstein and WentPhysica, 1935,5, 503.

    Article  Google Scholar 

  16. PulfrichWied. Ann., 1887,30, 496.

    Google Scholar 

  17. Radhakrishnan, T.Proc, Ind. Acad. Sci., A, 1947,25,a 265,b 382.

    Google Scholar 

  18. Ramachandran, G. N.Ibid.,, 1947,25,a 266,b 280,c 286,d 375,e 481,f 498.

    Google Scholar 

  19. ReedAnn. d. Phys. u. Chem., 1898,65, 734.

    Google Scholar 

  20. RudbergPogg. Ann., 1829,17, 16.

    Google Scholar 

  21. Schneider and O’BryanPhys. Rev., 1937,51, 293.

    Article  Google Scholar 

  22. ScouvartBull. Acad. Belg., 1912, 97.

  23. Sosman “Properties of Silica”, 1927, Ch. XXIV, p. 671.

  24. VenkateswaruluProc. Ind. Acad. Sci. A, 1942,16, 45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

(Communicated by Sir C. V. Raman,kt., f.r.s., n.l.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramachandran, G.N. Birefringence of crystals and its temperature-variation. Proc. Indian Acad. Sci. 26, 77 (1947). https://doi.org/10.1007/BF03170953

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF03170953

Keywords

Navigation