Skip to main content

Conway Memorial Lecture 2002 The dyslipidaemia of diabetes: lessons in the pathogenesis of atherosclerosis

This is a preview of subscription content, access via your institution.

References

  1. Maizels M. Edward Joseph Conway 1894–1968 Biographical Memoirs of Fellows of the Royal Society 1969; 15: 69–82.

    CAS  Google Scholar 

  2. Edward Joseph Conway — Obituary.Proc Roy Ir Acad Annual Report 1968; 69: 2–5.

    Google Scholar 

  3. Conway EJ. The biological performance of osmotic work.Science 1951; 113:270.

    Article  CAS  PubMed  Google Scholar 

  4. Mechanism of high acid production by yeast and its bearing on hydrochloric acid formation in the stomach.Nature 1947; 159: 137.

  5. Conway EJ, Byrne A. An absorption apparatus for the micro-determination of certain volatile substances. The microdiffusion of ammonia.Biochem J 1933; 27: 419–29.

    CAS  PubMed  Google Scholar 

  6. Conway EJ An absorption apparatus for the micro-determination of certain volatile substances. 11. The determination of urea and ammonia in body fluids.Biochem J 1933; 27: 431–4.

    Google Scholar 

  7. Tomkin GH, Owens D. ApoB lipoproteins, diabetes and atherosclerosis.Diabetes Metabol Res Rev 2001; 17: 27–43.

    Article  CAS  Google Scholar 

  8. McGarry DJ. Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes.Diabetes 2002; 51; 7–18.

    Article  CAS  PubMed  Google Scholar 

  9. Turner RC, Millns H, Neil HAW et al. Risk factors for coronary artery disease in non-insulin-dependent diabetes Mellitus: UK Prospective Diabetes Study (UKPDS:23)BMJ 1998; 316: 823–8

    CAS  PubMed  Google Scholar 

  10. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis.Science 1986; 232: 34–47.

    Article  CAS  PubMed  Google Scholar 

  11. Brown MS, Goldstein JL. The cholesterol Quartet.Science 2001; 292: 1310–2.

    Article  PubMed  Google Scholar 

  12. Shepherd J, Cobbe SM Ford I et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolaemia.N Engl J Med 1995; 333: 1301–7

    Article  CAS  PubMed  Google Scholar 

  13. Pyorala K, Pedersen TR, Kjekshus J, Fraergeman O, Olsson AG, Thorgeirsson G. The Scandinavian Simvastatin Survival Study (4S) Group. Cholesterol-lowering with simvastatin improves prognosis of diabetic patients with heart disease.Diabetes Care 1997; 20: 614–20.

    Article  CAS  PubMed  Google Scholar 

  14. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in diabetic subjects with type 2 diabetes and in non diabetic subjects with and without prior myocardial infarction.N Engl J Med 1998; 339: 229–34.

    Article  CAS  PubMed  Google Scholar 

  15. Bowie A, Owens D, Collins P, Johnson A, Tomkin GH. Low density lipoprotein from diabetic patients has an increased susceptibility to oxidation.Ir J Med Sci 1993; 162: 382.

    Article  Google Scholar 

  16. Deegan P. Owens D. Collins P. Johnson A. Tomkin GH. Association between low-density lipoprotein composition and its metabolism in noninsulin-dependent diabetes mellitus. Metabolism:Clin Exp 1999: 48: 118–24.

    CAS  Google Scholar 

  17. Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissues and the biochemical basis of diabetic complications.N Engl J Med 1988; 318: 1315–21.

    CAS  PubMed  Article  Google Scholar 

  18. Lopes-Virella M, Klein RL, Lyons et al. Glycosylation of low density lipoprotein enhances cholesteryl ester synthesis in human monocyte-derived macrophages.Diabetes 1988; 37: 550–7.

    Article  CAS  PubMed  Google Scholar 

  19. Bagdade JD, Lane JT, Subbaiah PV, Otto ME, Ritter MC. Accelerated cholesteryl ester transfer in non insulin-dependent diabetes mellitus.Atherosclerosis 1993; 104: 69–77.

    Article  CAS  PubMed  Google Scholar 

  20. Jones RJ, Owens D, Brennan C, Collins PB, Johnson AH, Tomkin GH. Increased esterification of cholesterol and transfer of cholesteryl ester to apo B-containing lipoproteins in Type 2 diabetes: relationship to serum lipoproteins AI and AII.Atherosclerosis 1996; 119: 151–7.

    Article  CAS  PubMed  Google Scholar 

  21. Colhoun HM, Scheek LM, Rubens MB, Van Gent T, Underwood SR, Fuller JH, Van Tol A. Lipid transfer protein activities in type 1 diabetic patients without renal failure and non-diabetic control subjects and their association with coronary artery calcification.Diabetes 2001; 5: 652–9.

    Article  Google Scholar 

  22. Owens D, Maher V, Collins P, Johnson A, Tomkin GH. Cellular cholesterol regulation — a defect in the Type 2 (non-insulin-dependent) diabetic patient in poor metabolic control.Diabetologia 1990: 33: 93–9.

    Article  CAS  PubMed  Google Scholar 

  23. Rapola JM, Virtamo J, Ripatti S, Heinonen OP. Randomised trial of alphatocopherol and beta-carotene supplements on incidence of major coronary events in men with previous myocardial infarction.Lancet 1997; 349: 1715–20.

    Article  CAS  PubMed  Google Scholar 

  24. Anonymous. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE sub study. Heart Outcomes Prevention Evaluation Study Investigators.Lancet 2000; 355: 253–9.

  25. Wollin SD, Jones PJ. Alcohol, red wine and cardiovascular disease.J Nutr 2001; 131: 1401–4.

    CAS  PubMed  Google Scholar 

  26. Prescott J, Owens D, Collins P, Johnson A. Tomkin GH. The relationship between low density lipoprotein fatty acid composition and size in diabetes.Biochim Biophys Acta 1999; 1439: 110–6.

    CAS  PubMed  Google Scholar 

  27. Dimitriadis E, Griffin M, Owens D, Johnson A, Collins P, Tomkin GH. Oxidation of low density lipoprotein in non-insulin dependent diabetes: Its relationship to fatty acid composition.Diabetologia 1995; 38: 1300–6.

    Article  CAS  PubMed  Google Scholar 

  28. Horobin DF. Fatty acid metabolism in health and disease. The role of delta-6-desaturase.Am J Clin Nutr 1993; 57 (Suppl): 732–75.

    Google Scholar 

  29. Storlien LH, Jenkins AB, Chisholm DJ et al. Influence of dietary fat composition on development of insulin resistance in rats: relationship to muscle triglyceride and omega-3 fatty acids in muscle phospholipid.Diabetes 1991; 40: 280–9.

    Article  CAS  PubMed  Google Scholar 

  30. Dimitriadis E, Griffin M, Owens D, Johnson A, Collins P, Tomkin GH. Lipoprotein composition in NIDDM. The effect of dietary oleic acid on composition and oxidisability and function of low and high density lipoproteins.Diabetologia 1996; 39: 667–76.

    Article  CAS  PubMed  Google Scholar 

  31. Austin MA, King MC. Vranizan KM, Krauss RM. Atherogenic lipoprotein phenotype: a proposed genetic marker for coronary disease risk.Circulation 1990; 82: 495–506.

    CAS  PubMed  Google Scholar 

  32. Packard CJ, Demant T, Stewart JP et al. Apolipoprotein B metabolism and the distribution of VLDL and LDL subfractions.J Lipid Res 2000; 41: 305–18.

    CAS  PubMed  Google Scholar 

  33. Lahdenpera S, Syvanne M, Kahri J, Taskinen M-R. Regulation of low density lipoprotein particle size and distribution in NIDDM and coronary artery disease: importance of serum triglycerides.Diabetologia 1996; 39: 453–61.

    Article  CAS  PubMed  Google Scholar 

  34. Mero N, Malmstrom R, Steiner G, Taskinen MR, Syvanne M. Postprandial metabolism of apolipoprotein B-48- and B-100 containing particles in type 2 diabetes mellitus: relations to angiographically verified severity of coronary artery disease.Atherosclerosis 2000; 150: 167–77.

    Article  CAS  PubMed  Google Scholar 

  35. Caixas A, Ordonez-Llanos J, deLeiva A, Payes A, Horns R, Perez A. Optimisation of glycaemic control by insulin therapy decreases the proportion of small dense LDK particles in diabetic patients.Diabetes 1997; 46: 1207–13.

    Article  CAS  PubMed  Google Scholar 

  36. Galeano NF, Al-Haideri M, Keyserman F, Rumsey SC, Deckelbaum RJ. Small dense low density lipoprotein has increased affinity for LDL receptorindependent cell surface binding sites: a potential mechanism for increased atherogenicity.J Lipid Res 1998; 39: 1263–73.

    CAS  PubMed  Google Scholar 

  37. Tribble DL, Holl LG, Wood PD, Krauss RM. Variation in oxidative susceptibility among six low density lipoprotein subtractions of differing density and particle size.Atherosclerosis 1992; 93: 189–99.

    Article  CAS  PubMed  Google Scholar 

  38. Owens D, Phillips C, Bell M, Collins P Tomkin GH. Type 2 diabetic patients have increased free fatty acids in their LDL.Euro J Clin Invest 2002 (in press).

  39. Benitez S, Sanchez-Quesada JL, Lucero L et al. Changes in low-density lipoprotein electronegativity and oxidizability after aerobic exercise are related to the increase in associated non-esterified fatty acids.Atherosclerosis 2002; 160: 223–32.

    Article  CAS  PubMed  Google Scholar 

  40. Kelley DE. Simoneau JA. Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus.J Clin Invest 1994: 94: 2349–56.

    Article  CAS  PubMed  Google Scholar 

  41. Zambon A, Schmidt I, Beisiegel U, Brunzell DJ. Dimeric lipoprotein lipase is bound to triglyceride-rich plasma lipoproteins.J Lipid Res 1996; 37: 2394–404.

    CAS  PubMed  Google Scholar 

  42. Vilella E, Joven J, Fernandez M et al. Lipoprotein lipase in human plasma is mainly inactive and associated with cholesterol-rich lipoproteins.J Lipid Res 1993; 34: 1555–64.

    CAS  PubMed  Google Scholar 

  43. Grønholdt ML, Nordestgaard BG, Wiebe BM, Wilhjelm JE, Sillesen H. Echo-lucency of computerized ultrasound images of carotid atherosclerotic plaque are associated with increased levels of triglyceride-rich lipoproteins as well as increased plaque lipid content.Circulation 1998; 97: 34–40.

    PubMed  Google Scholar 

  44. Lutz EP, Merkel M, Kako Y et al. Heparin-binding defective lipoprotein lipase is unstable and causes abnormalities in lipid delivery to tissues.J Clin Invest 2001; 107: 1183–92.

    Article  CAS  PubMed  Google Scholar 

  45. Phillips C, Owens D, Collins P, Tomkin GH. Compositional abnormalities of low density lipoprotcin in type 2 diabetes: An explanation for increased atherogenicity?Diabetologia 2002 (in press).

  46. Ross R. Atherosclerosis — an inflammatory disease.N Engl J Med 1999; 340: 115–26.

    Article  CAS  PubMed  Google Scholar 

  47. Witztum JKL, Palinski W. Are immunological mechanisms relevant for the development of atherosclerosis?Clin Immunol 1999; 90: 153–6.

    Article  CAS  PubMed  Google Scholar 

  48. Salonen JT, Yla-Herttuala S, Yamamoto R et al. Autoantibodies against oxidised low density lipoprotein predicting myocardial infarction.Atheroscler Thromb Vasc Biol 1997; 17: 3159–63.

    Google Scholar 

  49. Griffin M, McInerny D, Collins P, Johnson A, Owens D, Tomkin GH. Autoantibodies to oxidised LDL arc related to LDL fatty acid composition in diabetes.Diabet Med 1997; 14: 741–7.

    Article  CAS  PubMed  Google Scholar 

  50. Mackness MI, Arrol S, Abbott C, Durrington PN. Protection of low density lipoprotein against oxidative modification by high density lipoprotein associated paraoxonase.Atherosclerosis 1993; 104: 129.

    Article  CAS  PubMed  Google Scholar 

  51. Ruiz J, Blanche H, James R et al. A polymorphism of paraoxinase and coronary heart disease in type 2 diabetes.Lancet 1995; 346: 869–72.

    Article  CAS  PubMed  Google Scholar 

  52. Mackness B, Durrington PN, Abuashia B, Boulton AJ, Mackness MI. Low paraoxinase activity in type II diabetes mellitus complicated by retinopathy.Clin Sci 2000; 98: 355–63.

    Article  CAS  PubMed  Google Scholar 

  53. Bo S, Cavallo-Perin P, Gentile L, Repetti E, Pagano G. Low HDL cholesterol: a component of the metabolic syndrome only in the presence of fasting hypertriglyceridaemia in type 2 diabetic patients.Diabetes & Metabolism 2001; 27: 31–5.

    CAS  Google Scholar 

  54. Tall AR, Wang N, Mucksavage P. Is it time to modify the reverse cholesterol transport model?J Clin Invest 2001; 108: 1273–5.

    CAS  PubMed  Google Scholar 

  55. Brooks-Wilson A, Marciel M, Clee SM. Mutations in ABC-1 in Tangier disease and familial high density lipoprotein deficiency.Nat Genet 1999; 22: 336–45.

    Article  CAS  PubMed  Google Scholar 

  56. Rust S, Rosier M, Funke H et al. Tangier disease caused by mutations in the gene encoding ATP-binding cassette transporter 1.Nat Genet 1999; 22; 352–5.

    Article  CAS  PubMed  Google Scholar 

  57. Marcil M, Brooks-Wilson A, Clee SM et al. Mutations in the ABC-1 gene in familial HDL deficiency with defective cholesterol efflux.Lancet 1999; 354: 1341–6.

    Article  CAS  PubMed  Google Scholar 

  58. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of the scavenger receptor SRB1 as a lipoprotein receptor.Science 1996; 217: 518–20.

    Article  Google Scholar 

  59. Gu X Kozarsky K, Krieger M. Scavenger receptor class B type 1-mediated [3H] cholesterol efflux to high and low density lipoprotien is dependent on lipoprotein binding to the receptorJ Biol Chem 2000; 39: 29993–30001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tomkin, G.H. Conway Memorial Lecture 2002 The dyslipidaemia of diabetes: lessons in the pathogenesis of atherosclerosis. Ir J Med Sci 171, 220–224 (2002). https://doi.org/10.1007/BF03170286

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03170286

Keywords

  • Cholesteryl Ester
  • Lipoprotein Lipase
  • Irish Journal
  • United Kingdom Prospective Diabetes Study
  • Cholesterol Ester Transfer Protein