Skip to main content
Log in

New molecular insights into heart failure and cardiomyopathy: potential strategies and therapies

  • Review
  • Published:
Irish Journal of Medical Science Aims and scope Submit manuscript

Abstract

Background

In the most severely affected patients the mortality for congestive heart failure exceeds that of many cancers. While therapies are largely aimed at attenuating neurohumoral responses recent molecular insights reveal other potential targets for therapy.

Aims

To summarise some of the recent developments in the management of heart failure and provide the clinician who treats heart failure with new insights into emerging approaches.

Methods

A literature review was conducted of the recent literature together with personal research data.

Results

Large randomised trials will provide a more comprehensive understanding of the interaction of β-blockers and other heart failure therapies with gene polymorphisms. Cytokines are important in the progression of heart failure, yet therapy aimed at blocking cytokine effects has not been successful. More selective use of anti-cytokine therapy may have beneficial effects. Gene therapy to improve heart failure has not yet reached clinical trials. The molecular genetics of hypertrophic and dilated cardiomyopathy is rapidly improving our understanding so that genetic diagnostics and counselling may soon be performed for patients and families.

Conclusions

The emergence of a molecular based understanding of heart failure will hopefully improve therapy of this common condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cleland JGF, Khand A, Clark A. The heart failure epidemic: exactly how big is it.Eur Heart J 2001; 22: 623–6.

    Article  CAS  PubMed  Google Scholar 

  2. Kannel WB, Belanger AJ. Epidemiology of heart failure.Am Heart J 1991; 211: 951–7.

    Article  Google Scholar 

  3. Pfeffer MA, Braunwald E, Move LA et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction — Results of the survival and ventricular enlargement trial.N Engl J Med 1992; 327: 669–77.

    CAS  PubMed  Google Scholar 

  4. Yusuf S, Nicklas JM, Timmis G et al. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions.N Engl J Med 1992; 327: 685–91.

    Google Scholar 

  5. Packer M, Bristow MR, Cohn JN et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure.N Engl J Med 1996; 334: 1349–55.

    Article  CAS  PubMed  Google Scholar 

  6. Merit-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL randomized intervention trial in congestive heart failure.Lancet 1999; 353: 2001–7.

    Article  Google Scholar 

  7. Parmley WW. How many medicines do patients with heart failure need?Circulation 2001; 103: 1611–2.

    CAS  PubMed  Google Scholar 

  8. Deng MC, De Meester JMJ, Smits JMA, Heinecke J, Scheid HH. Effect of receiving a heart transplant: analysis of a national cohort entered on to a waiting list, stratified by heart failure severity.BMJ 2000; 321: 540–5.

    Article  CAS  PubMed  Google Scholar 

  9. Oz MC, Argenziano M, Catanese KA et al. Bridge experience with long term implantable left ventricular assist devices. Are they an alternative to transplantation?Circulation 1997; 95: 1844–52.

    CAS  PubMed  Google Scholar 

  10. Rose EA, Gelijns AC, Moskowitz AJ et al. Long-term use of a left ventricular assist device for end-stage heart failure.N Engl J Med 2001; 345: 1435–43.

    Article  CAS  PubMed  Google Scholar 

  11. Alhenc-Gelas F, Richard J, Courbon D, Warnet JM, Corvol P. Distribution of plasma angiotensin 1-converting enzyme levels in healthy men: relationship to environmental and hormonal parameters.J Lab Clin Med 1991; 117: 33–9.

    CAS  PubMed  Google Scholar 

  12. Soubrier F, Alhenc-Gelas F, Hubert C et al. Two putative active centers in human angiotensin 1-converting enzyme revealed by molecular cloning.Proc Natl Acad Sci USA 1988; 85: 9386–90.

    Article  CAS  PubMed  Google Scholar 

  13. Tiret L, Rigat B, Visvikis S et al. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACF2 levels.Am J Hum Genet 1992; 51: 197–205.

    CAS  PubMed  Google Scholar 

  14. Rigat B, Hubert C, Alhenc-Gelas F et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels.J Clin Invest 1990; 86: 1343–6.

    Article  CAS  PubMed  Google Scholar 

  15. Cody RJ, Franklin KW, Kulger J et al. Sympathetic responsiveness and plasma norepinephrine during therapy of chronic congestive heart failure with captopril.Am J Med 1982; 72: 791–7.

    Article  CAS  PubMed  Google Scholar 

  16. Danser AH, Derkx FH, Hense HW et al. Angiotensinogen (M235T) and angiotensin-converting enzyme (I/D) polymorphisms in association with plasma renin and prorenin levels.J Hypertens 1998; 16: 1879–83.

    Article  CAS  PubMed  Google Scholar 

  17. Byrne J, Murdoch DR, Robb SD et al. The insertion/deletion polymorphism of the angiotensin-converting enzyme gene, and indices of left ventricular function following myocardial infarction.J Am Coll Cardiol 1998; 31(suppl 2): 491A.

    Article  Google Scholar 

  18. Andersson B, Sylven C. The DD genotype of the angiotensin-converting enzyme gene is associated with increased mortality in idiopathic heart failure.J Am Coll Cardiol 1996; 28: 162–7.

    Article  CAS  PubMed  Google Scholar 

  19. McNamara DM, Holubkov R, Janosko K et al. Pharmacogenetic interactions between β-blocker therapy and the angiotensin-converting enzyme deletion polymorphism in patients with congestive heart failure.Circulation 2001; 103: 1644–8.

    CAS  PubMed  Google Scholar 

  20. Roden DM. Prescription genotyping: Not yet ready for prime time.Circulation 2001; 103: 1608–10.

    CAS  PubMed  Google Scholar 

  21. Ghosh S, Collins FS. The geneticist’s approach to complex disease.Annu Rev Med 1996; 47: 333–53.

    Article  CAS  PubMed  Google Scholar 

  22. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure.N Engl J Med 1990; 323: 236–41.

    CAS  PubMed  Google Scholar 

  23. Balkwill F, Osborne R, Burke F et al: Evidence of tumor necrosis factor/cachectin production in cancer.Lancet 1987; 2: 1229–32.

    Article  CAS  PubMed  Google Scholar 

  24. Waage A, Halstensen A, Espevik T. Association between tumour necrosis factor in serum and fatal outcome in patients with meningococcal disease.Lancet 1987; 1: 355–7.

    Article  CAS  PubMed  Google Scholar 

  25. Maury CP, Teppo A-M. Tumour necrosis factor in the serum of patients with systemic lupus erythematosis.Arthritis Rheum 1989; 32: 146–50.

    Article  CAS  PubMed  Google Scholar 

  26. Oliff A. The role of tumor necrosis factor (cachectin) in cachexia.Cell 1998; 54: 141–2.

    Article  Google Scholar 

  27. MacGowan GA, Mann DL, Kormos RL, Feldman AM, Murali S. Circulating interleukin-6 in severe heart failure.Am J Cardiol 1997; 79: 1128–31.

    Article  CAS  PubMed  Google Scholar 

  28. MacGowan GA, Kormos RL, McNamara DM et al. Predicting short term outcome in severely ill heart failure patients: Implications regarding listing for urgent cardiac transplantation and patient selection for temporary ventricular assist device support.J Card Fail 1998; 4 (3): 169–75.

    Article  CAS  PubMed  Google Scholar 

  29. Finkel MS, Oddis CV, Jacob TD et al. Negative inotropic effects of cytokines on the heart mediated by nitric oxide.Science 1992; 257 (5068): 387–9.

    Article  CAS  PubMed  Google Scholar 

  30. Yokoyama T, Vaca L, Rossen RD et al. Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart.J Clin Invest 1993; 92: 2303–12.

    Article  CAS  PubMed  Google Scholar 

  31. Oral H, Dorn GW, Mann DL. Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian cardiac myocyte.J Biol Chem 1997; 272: 4836–42.

    Article  CAS  PubMed  Google Scholar 

  32. Kubota T, McTiernan CF, Frye CS et al. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha.Circ Res 1997; 81 (4): 627–35.

    CAS  PubMed  Google Scholar 

  33. Deswal A, Bozkurt B, Seta Y et al. A phase I trial of tumor necrosis factor receptor (p75) fusion protein (TNFR:Fc) in patients with advanced heart failure.Circulation 1999; 99: 3224–6.

    CAS  PubMed  Google Scholar 

  34. Mohler KM, Murray KM, Mann DL, Francis DL. Use of targeted anticytokine treatments in heart failure.Circulation 2000; 102: 65.

    Google Scholar 

  35. Bozkurt B, Torre-Amione G, Smith Warren M et al. Results of targeted anti-tumor necrosis factor therapy with etanercept (ENBREL) in patients with advanced heart failure.Circulation 2001; 103: 1044.

    CAS  PubMed  Google Scholar 

  36. Wada H, Saito K, Kanda T et al. Tumor necrosis factor-α (TNF-α) plays a protective role in acute viral myocarditis in mice: A study using mice lacking TNF-α.Circulation 2001; 103: 743–9.

    CAS  PubMed  Google Scholar 

  37. McNamara DM, Starling R, Dec GW et al. Plasma cytokines in acute cardiomyopathy: Evolution over time, correlation with functional studies, and potential role in recovery.Circulation 2000; 102: 11–415 (abstract).

    Google Scholar 

  38. Gwathmey JK, Copelas L, MacKinnon R et al. Abnormal intracellular calcium handling from patients with end-stage heart failure.Circ Res 1987; 61: 70–6.

    CAS  PubMed  Google Scholar 

  39. Houser SR, Piacentino Valentino III, Weisser J. Abnormalities of calcium cycling in the hypertrophied and failing heart.J Mol Cell Cardiol 2000; 32: 1595–607.

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt U, del Monte F, Miyamoto MI et al. Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca2+-ATPase.Circulation 2000; 101: 790–6.

    CAS  PubMed  Google Scholar 

  41. Miyamoto MI, del Monte F, Schmidt U et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure.Proc Natl Acad Sci USA 2000; 97: 793–8.

    Article  CAS  PubMed  Google Scholar 

  42. del Monte F, Harding SE, Schmidt U et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a.Circulation 1999; 100: 2308–11.

    Google Scholar 

  43. Bristow MR, Ginsburg R, Minobe W et al. Decreased catecholamine sensitivity and b-adrenergic receptor density in failing human hearts.N Engl J Med 1982; 307: 205–11.

    Article  CAS  PubMed  Google Scholar 

  44. Brodde OE. Beta-adrenoreceptors in cardiac disease.Pharmacol Ther 1993; 60: 405–30.

    Article  CAS  PubMed  Google Scholar 

  45. Ungerer M, Bohm Elce JS, Erdmann E, Lohse MJ. Altered expression of beta-adrenergic receptor kinase and beta l-adrenergic receptors in the failing human heart.Circulation 1993; 87: 454–63.

    CAS  PubMed  Google Scholar 

  46. Akhter SA, Skaer CA, Kypson AP et al. Restoration of beta-adrenergic signaling in failing cardiac myocytes via adenoviral-mediated gene transfer.Proc Natl Acad Sci USA 1997; 94: 12100–105.

    Article  CAS  PubMed  Google Scholar 

  47. Rockman HA, Chien KR, Choi DJ et al. Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice.Proc Natl Acad Sci USA 1998; 95: 7000–5.

    Article  CAS  PubMed  Google Scholar 

  48. Shah AS, White DC, Emani S et al. In vivo delivery of a beta-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction.Circulation 2001; 103: 1311–6.

    Article  CAS  PubMed  Google Scholar 

  49. Hajjar RJ, del Monte F, Matsui T, Rosenzweig A. Prospects for gene therapy for heart failure.Circ Res 2000; 86: 616–21.

    CAS  PubMed  Google Scholar 

  50. Packer M, Carver JR, Rodeheffer RJ et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group.N Engl J Med 1991; 325: 1468–75.

    Article  CAS  PubMed  Google Scholar 

  51. Francis SC, Raizada MK, Angi AA et al. Genetic targeting for cardiovascular therapeutics: are we near the summit or just beginning the climb?Physiol Genomics 2001; 7: 79–94.

    CAS  PubMed  Google Scholar 

  52. Esakof DD, Maysky M, Losordo DW et al. Intraoperative multiplane transesophageal echocardiography for guiding direct myocardial gene transfer of vascular endothelial growth factor in patients with refractory angina pectoris.Hum Gene Ther 1999; 10: 2315–23.

    Article  Google Scholar 

  53. Kypson AP, Peppel K, Akhter SA. Ex-vivo adenoviral-mediated gene transfer to the transplanted adult rat heart heart.J Thorac Cardiovasc Surg 1998; 115: 623–30.

    Article  CAS  PubMed  Google Scholar 

  54. Kypson A, Hendrickson S, Akhter S et al. Adenovirus-mediated gene transfer of the β2-adrenergic receptor to donor hearts enhances cardiac function.Gene Ther 1999; 6: 1298–04.

    Article  CAS  PubMed  Google Scholar 

  55. Maurice JP, Hata JA, Shah AS et al. Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary β2-adrenergic receptor gene delivery.J Clin Invest 1999; 104: 21–9.

    Article  CAS  PubMed  Google Scholar 

  56. White DC, Hata JA, Shah AS et al. Preservation of myocardial β-adrenergic receptor signaling delays development of heart failure after myocardial infarction.Proc Natl Acad Sci USA 2000; 97: 5428–33.

    Article  CAS  PubMed  Google Scholar 

  57. Shah AS, Lilly RE, Kypson AP et al. Intracoronary adenovirus-mediated delivery and overexpression of the β2-adrenergic receptor in the heart. Prospects for molecular ventricular assistance.Circulation 2000; 101: 408–14.

    CAS  PubMed  Google Scholar 

  58. Maron BJ, Bonow RO, Cannon RO III, Leon MB, Epstein SE. Hypertrophic cardiomyopathy. Interrelations of clinical manifestations, pathophysiology, and therapy (1).N Engl J Med 1987; 316: 780–9.

    Article  CAS  PubMed  Google Scholar 

  59. Maron BJ, Bonow RO, Cannon RO III, Leon MB, Epstein SE. Hypertrophic cardiomyopathy. Interrelations of clinical manifestations, pathophysiology, and therapy (2).N Engl J Med 1987; 316: 844–52.

    Article  CAS  PubMed  Google Scholar 

  60. Redwood CS, Moolman-Smook JC, Watkins H. Properties of mutant contractile proteins that cause hypertrophie cardiomyopathy.Cardiovasc Res 1999; 44: 20–36.

    Article  CAS  PubMed  Google Scholar 

  61. Moolman JC, Corfield VA, Posen B et al. Sudden death due to troponin T mutations:J Am Coll Cardiol 1997; 29: 549–55.

    Article  CAS  PubMed  Google Scholar 

  62. Niimura H, Bachinski LL, Sangwatanaroj S et al. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy.N Engl J Med 1998; 338: 1303–4.

    Article  Google Scholar 

  63. Lankford EB, Epstein ND, Fananapazir L, Sweeney HL. Abnormal contractile properties of muscle fibers expressing beta-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy.J Clin Invest 1995; 95: 1409–14.

    Article  CAS  PubMed  Google Scholar 

  64. Bottinelli R, Coviello DA, Redwood CS, et al. A mutant tropomyosin that causes hypertrophic cardiomyopathy is expressed in vivo and associated with an increased calcium sensitivity.Circ Res 1998; 82: 106–15.

    CAS  PubMed  Google Scholar 

  65. Elliott K, Watkins H, Redwood CS. Altered regulatory properties of human cardiac troponin I mutants that cause hypertrophic cardiomyopathy.J Biol Chem 2000; 275: 22069–74.

    Article  CAS  PubMed  Google Scholar 

  66. Blair E, Redwood C, Ashrafian H et al. Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis.Hum Mol Genet 2001; 10: 1215–20.

    Article  CAS  PubMed  Google Scholar 

  67. MacGowan GA, Koretsky AP. Inotropic and energetic effects of altering the force-calcium relationship: mechanisms, experimental results, and potential molecular targets.J Card Fail 2000; 6: 144–56.

    CAS  PubMed  Google Scholar 

  68. Gao WD, Perez NG, Seidman CE, Seidman JG, Marban E. Altered cardiac excitation-contraction coupling in mutant mice with familial hypertrophic cardiomyopathy.J Clin Invest 1999; 103: 661–6.

    Article  CAS  PubMed  Google Scholar 

  69. MacGowan GA, Du C, Cowan DB et al. Ischaemic dysfunction in transgenic mice expressing troponin I lacking protein kinase C phosphorylation sites.Am J Physiol (Heart Circ Physiol) 2001; 280: H835–43.

    CAS  Google Scholar 

  70. Michels W, Moll PP, Miller FA et al. The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy.N Engl J Med 1992; 326: 77–82.

    Article  CAS  PubMed  Google Scholar 

  71. Hoffman EP, Brown RH, Kunkel LM. Dystrophin; the protein product of the Duchenne muscular dystrophy locus.Cell 1987; 24: 919–28.

    Article  Google Scholar 

  72. Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure.N Engl J Med 1999; 341: 1276–83.

    Article  CAS  PubMed  Google Scholar 

  73. Li D, Tapscoft T, Gonzalez O et al. Desmin mutation responsible for idiopathic dilated cardiomyopathy.Circulation 1999; 100: 461–4.

    CAS  PubMed  Google Scholar 

  74. Olson TM, Michels W, Thibodeau SN, Tai YS, Keating MT. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure.Science 1998; 280: 750–2.

    Article  CAS  PubMed  Google Scholar 

  75. Mogensen J, Klausen IC, Pedersen AK et al. Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy.J Clin Invest 1999; 103: R39–43.

    Article  CAS  PubMed  Google Scholar 

  76. Minamisawa S, Hoshijima M, Chu G et al. Chronic phospholambansarcoplasmic calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy.Cell 1999; 99: 313–22.

    Article  CAS  PubMed  Google Scholar 

  77. McDonald K, Ledwidge M, Cahill J et al. Elimination of early rehospitalisation in a randomised, controlled trial of multidisciplinary care in a high risk, elderly heart failure population: the potential contributions of specialist care, clinical stability and optimal angiotensin-converting enzyme inhibitor dose at discharge.Eur J Heart Fail. 2001; 3: 209–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. MacGowan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacGowan, G.A., McNamara, D.M. New molecular insights into heart failure and cardiomyopathy: potential strategies and therapies. Ir J Med Sci 171, 99–104 (2002). https://doi.org/10.1007/BF03168962

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03168962

Keywords

Navigation