Skip to main content
Log in

A competition-diffusion system approximation to the classical two-phase Stefan problem

To the memory of Professor Masaya Yamaguti

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

A new type of competition-diffusion system with a small parameter is proposed. By singular limit analysis, it is shown that any solution of this system converges to the weak solution of the two-phase Stefan problem with reaction terms. This result exhibits the relation between an ecological population model and water-ice solidification problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. R.A. Adams, Sobolev Spaces. Academic Press, 1978.

  2. D. Bothe, The instantaneous limit of a reaction-diffusion system. Preprint.

  3. H. Brezis, Analyse Fonctionnelle. Masson, 1983.

  4. E.N. Dancer, D. Hilhorst, M. Mimura and L.A. Peletier, Spatial segregation limit of a competition-diffusion system. European J. Appl. Math.,10 (1999), 97–115.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. DiBenedetto, Continuity of weak solutions to a general porous medium equation. Indiana Univ. Math. J.,32 (1983), 83–118.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Eymard, D. Hilhorst, R. van der Hout and L.A. Peletier, A reaction-diffusion system approximation of a one-phase Stefan problem. To appear in the book in the honor of Professor Bensoussan’s sixtieth birthday, 2000.

  7. K.P. Hadeler, Travelling fronts and free boundary value problems. Numerical Treatment of Free Boundary Problems (eds. J. Albrecht, L. Collatz and K.H. Hoffmann),8, 1981, 90–107.

  8. D. Hilhorst, M. Mimura and R. Schätzle, Vanishing latent heat limit in a Stefan-like problem in biology. Manuscript.

  9. D. Hilhorst, R.van der Hout and L.A. Peletier, The fast reaction limit for a reaction-diffusion system. J. Math. Anal. Appl.,199 (1996), 349–373.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Hilhorst, R.van der Hout and L.A. Peletier, Diffusion in the presence of fast reaction: the case of a general monotone reaction term. J. Math. Sci. Univ. Tokyo,4 (1997), 469–517.

    MATH  MathSciNet  Google Scholar 

  11. D. Hilhorst, R.van der Hout and L.A. Peletier, Nonlinear diffusion in the presence of fast reaction. Nonlinear Anal. TMA,41 (2000), 803–823.

    Article  Google Scholar 

  12. H. Kawarada and M. Natori, Numerical solutions of a two-phase Stefan problem. Theoretical and Applied Mechanics,23 (1975), 511–516.

    Google Scholar 

  13. M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology. Japan J. Appl. Math.,2 (1985), 151–186.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Mimura, Y. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology. Hiroshima Math. J.,16 (1986), 477–498.

    MATH  MathSciNet  Google Scholar 

  15. M. Mimura and T. Tujikawa, Aggregating pattern dynamics in a chemotaxis-model including growth. Physica A,230 (1996), 499–543.

    Article  Google Scholar 

  16. H. Tanabe, Functional Analytic Methods for Partial Differential Equations. Dekker, 1997.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Hilhorst, D., Iida, M., Mimura, M. et al. A competition-diffusion system approximation to the classical two-phase Stefan problem. Japan J. Indust. Appl. Math. 18, 161–180 (2001). https://doi.org/10.1007/BF03168569

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03168569

Key words

Navigation