Skip to main content

Deviation from the predicted wavenumber in a mode selection problem for the Turing patterns

Abstract

In this paper, we investigate a mode selection problem for the Turing patterns generated from small random initial disturbances in one-dimensional reaction-diffusion systems on a sufficiently large domain. For this problem, it is widely accepted that the maximizer of the dispersion relation give rise to the wavenumber to be selected. Even in a small neighborhood of the bifurcation point, our numerical experiments show that this is not always true.

This is a preview of subscription content, access via your institution.

References

  1. M. Bode, A.W. Liehr, C.P. Schenk and H.-G. Purwins, Interaction of dissipative solitons: particle-like behavior of localized structures in a three-component reaction-diffusion system. Physica D,161 (2002), 45–66.

    MATH  Article  MathSciNet  Google Scholar 

  2. M.C. Cross and P.C. Hohenberg, Pattern formation outside of equilibrium. Rev. Mod. Phys.,65 (1993), 851–1112.

    Article  Google Scholar 

  3. G. Dee and J.S. Langer, Propagating pattern selection. Phys. Rev. Lett.,50 (1983), 383.

    Article  Google Scholar 

  4. J.C. Eilbeck, The pseudo-spectral method and following in reaction-diffusion bifurcation studies. SIAM J. Sci. Stat. Comput.,17 (1986), 599–610.

    MathSciNet  Google Scholar 

  5. G. Iooss and D.D. Joseph, Elementary Stability and Bifurcation Theory. Springer-Verlag, 1980.

  6. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence. Springer-Verlag, 1984.

  7. M. Kuwamura, On the Turing patterns in one-dimensional gradient/skew-gradient dissipative systems. SIAM J. Appl. Math.,65 (2005), 618–643.

    MATH  Article  MathSciNet  Google Scholar 

  8. M. Kuwamura and E. Yanagida, Krein’s formula for indefinite multipliers in linear periodic Hamiltonian systems. J. Differential Equations,230 (2006), 446–464.

    MATH  Article  MathSciNet  Google Scholar 

  9. H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sci.,15 (1979), 401–485.

    MATH  Article  MathSciNet  Google Scholar 

  10. J.D. Murray, Mathematical Biology, 2nd edition. Springer-Verlag, 1993.

  11. Y. Nishiura, Far-from-Equilibrium Dynamics. Transl. Math. Monogr.,209, AMS, Providence, RI, 2002.

    MATH  Google Scholar 

  12. W. van Saarloos, Front propagation into unstable states. Physics Reports,386 (2003), 29–222.

    MATH  Article  Google Scholar 

  13. A.M. Turing, The chemical basis of morphogenesis. Phil. Roy. Soc. B,237 (1952), 37–72.

    Article  Google Scholar 

  14. E. Yanagida, Standing pulse solutions in reaction-diffusion systems with skew-gradient structure. J. Dynamics Differential Equations,4 (2000), 89–205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Kuwamura.

About this article

Cite this article

Kuwamura, M. Deviation from the predicted wavenumber in a mode selection problem for the Turing patterns. Japan J. Indust. Appl. Math. 25, 281 (2008). https://doi.org/10.1007/BF03168552

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1007/BF03168552

Key words

  • Turing pattern
  • mode selection
  • dispersion relation