Skip to main content
Log in

Breast imaging using an amorphous silicon-based full-field digital mammographic system: Stability of a clinical prototype

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

An amorphous silicon-based full-breast imager for digital mammography was evaluated for detector stability over a period of 1 year. This imager uses a structured Csl:Tl scintillator coupled to an amorphous silicon layer with a 100-micron pixel pitch and read out by special purpose electronics. The stability of the system was characterized using the following quantifiable metrics: conversion factor (mean number of electrons generated per incident x-ray), presampling modulation transfer function (MTF), detector linearity and sensitivity, defector signal-to-noise ratio (SNR), and American College of Radiology (ACR) accreditation phantom scores. Qualitative metrics such as flat field uniformity, geometric distortion, and Society of Motion Picture and Television Engineers (SMPTE) test pattern image quality were also used to study the stability of the system. Observations made over this 1-year period indicated that the maximum variation from the average of the measurements were less than 0.5% for conversion factor, 3% for presampling MTF over all spatial frequencies, 5% for signal response, linearity and sensitivity, 12% for SNR over seven locations for all 3 target-filter combinations, and 0% for ACR accreditation phantom scores. ACR mammographic accreditation phantom images indicated the ability to resolve 5 fibers, 4 speck groups, and 5 masses at a mean glandular dose of 1.23 mGy. The SMPTE pattern image quality test for the display monitors used for image viewing indicated ability to discern all contrast steps and ability to distinguish line-pair images at the center and corners of the image. No bleeding effects were observed in the image. Flat field uniformity for all 3 target-filter combinations displayed no artifacts such as gridlines, bad detector rows or columns, horizontal or vertical streaks, or bad pixels. Wire mesh screen images indicated uniform resolution and no geometric distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bick U, Giger ML, Schmidt RA, et al: Density correction of peripheral breast tissue on digital mammograms. Radiographics 16:1403–1411, 1996

    CAS  PubMed  Google Scholar 

  2. Kupinski MA, Giger ML: Automated seeded lesion segmentation on digital mammograms. IEEE Trans Med Imaging 17:510–517, 1998

    Article  CAS  PubMed  Google Scholar 

  3. Buchbinder SS, Leichter IS, Bamberger PN, et al: Analysis of clustered microcalcifications by using a single numeric classifier extracted from mammographic digital images. Acad Radiol 5:779–784, 1998

    Article  CAS  PubMed  Google Scholar 

  4. Anastasio MA, Yoshida H, Nagel R, et al: A genetic algorithm-based method for optimizing the performance of a computer-aided diagnosis scheme for detection of clustered microcalcifications in mammograms. Med Phys 25:1613–1620, 1998

    Article  CAS  PubMed  Google Scholar 

  5. Wei D, Chan HP, Petrick N, et al: False-positive reduction technique for detection of masses on digital mammograms: Global and local multiresolution texture analysis. Med Phys 24:903–914, 1997

    Article  CAS  PubMed  Google Scholar 

  6. Yoshida H, Doi K, Nishikawa RM, et al: An improved computer-assisted diagnostic scheme using wavelet transform for detecting clustered microcalcifications in digital mammograms. Acad Radiol 3:621–627, 1996

    Article  CAS  PubMed  Google Scholar 

  7. Kallergi M, Carney GM, Gaviria J: Evaluating the performance of detection algorithms in digital mammography. Med Phys 26:267–275, 1999

    Article  CAS  PubMed  Google Scholar 

  8. Niklason LT, Christian BT, Niklason LE, et al: Digital tomosynthesis in breast imaging. Radiology 205:399–406, 1997

    CAS  PubMed  Google Scholar 

  9. Ruttimann UE, Groenhuis RAJ, Webber RL: Restoration of digital multiplane tomosynthesis by a constrained iteration method. IEEE Trans Med Imaging MI-3:141–148, 1984

    Article  CAS  Google Scholar 

  10. Suryanarayanan S, Karellas A, Vedantham S, et al: Tomosynthesis reconstruction methods for digital mammography. Biomedical imaging symposium: Visualizing the future of biology and medicine, National Institute of Health, June 25–26, Bethesda, MD, 1999

  11. Glick SJ, Karellas A, Vedantham S, et al: Iterative reconstruction for limited angle tomographic digital mammography. Radiology 209P:159, 1998

    Google Scholar 

  12. Flanagan FL, Murray JG, Gilligan P, et al: Digital subtraction in Gd-DTPA enhanced imaging of the breast. Clin Radiol 50:848–854, 1995

    Article  CAS  PubMed  Google Scholar 

  13. Chakraborty DP, Barnes GT: An energy sensitive cassette for dual-energy mammography. Med Phys 16:7–13, 1989

    Article  CAS  PubMed  Google Scholar 

  14. Asaga T, Chiyasu S, Mastuda S, et al: Breast imaging: Dual-energy projection radiography with digital radiography. Radiology 164:869–870, 1987

    CAS  PubMed  Google Scholar 

  15. Holdsworth DW, Gerson RK, Fenster A: A time-delay integration charge-coupled device camera for slot-scanned digital radiography. Med Phys 17:876–886, 1990

    Article  CAS  PubMed  Google Scholar 

  16. Nishikawa RM, Mawdsley GE, Fenster A, et al: Scanned-projection digital mammography. Med Phys 14:717–727, 1987

    Article  CAS  PubMed  Google Scholar 

  17. Karellas A, Harris LJ, Liu H, et al: Charge-coupled device detector: Performance considerations and potential for small-field mammographic imaging applications. Med Phys 19:1015–1023, 1992

    Article  CAS  PubMed  Google Scholar 

  18. Hejazi S, Trauernicht DP: System considerations in CCD-based x-ray imaging for digital chest radiography and digital mammography. Med Phys 24:287–297, 1997

    Article  CAS  PubMed  Google Scholar 

  19. Vedantham S, Levis I, Karellas A, et al: Characterization of a clinical prototype small-format CCD-based cassette for digital mammography. Radiology 209P:160, 1998

    Google Scholar 

  20. Kimme-Smith C, Lewis C, Beifuss M, et al: Establishing minimum performance standards, calibration intervals, and optimal exposure values for a whole breast digital mammography unit. Med Phys 25:2410–2416, 1998

    Article  CAS  PubMed  Google Scholar 

  21. Siewerdsen JH, Antonuk LE, El-Mohri Y, et al: Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology. Med Phys 24:71–89, 1997

    Article  CAS  PubMed  Google Scholar 

  22. Antonuk LE, El-Mohri Y, Jee K, et al: Performance evaluation of a large area, 97 μm pitch: Indirect detection active matrix flat-panel imager (AMFPI) for radiography and fluoroscopy. Radiology 209P:357, 1998

    Google Scholar 

  23. Antonuk LE, El-Mohri Y, Jee K, et al: Performance limits of high resolution large area active matrix flat-panel imagers (AMFPIs). Radiology 209P:581, 1998

    Google Scholar 

  24. Antonuk LE, Jee K, El-Mohri Y, et al: Strategies to significantly enhance performance of active matrix flat-panel imagers (AMFPIs). Radiology 209P:358, 1998

    Google Scholar 

  25. Rougeot HM, Opsahl-Ong B, Castleberry DE, et al: Performance evaluation of a flat-panel filmless full-field digital mammography system. Radiology 201P:190, 1996

    Google Scholar 

  26. Vedantham S, Karellas A, Suryanarayanan S, et al: Full breast digital mammographic imaging with an amorphous silicon-based flat panel detector: Physical characteristics of a clinical prototype. Med Phys 27:558–567, 2000

    Article  CAS  PubMed  Google Scholar 

  27. Karellas A, Vedantham S, Levis I, et al: Evaluation of a full-field clinical prototype flat panel imager for digital mammography. Radiology 209P:159, 1998

    Google Scholar 

  28. Neitzel U, Maack I, Gunther-Kohfahl S: Image quality of a digital chest radiography system based on a selenium detector. Med Phys 21:509–516, 1994

    Article  CAS  PubMed  Google Scholar 

  29. Zhao W, Rowlands JA: Digital radiology using active matrix readout of amorphous selenium: Theoretical analysis of detective quantum efficiency. Med Phys 24:1819–1833, 1997

    Article  CAS  PubMed  Google Scholar 

  30. Garverick SL, Skrenes L, Baertsch RD: A 32-channel charge readout IC for programmable, nonlinear quantization of multichannel detector data. IEEE J of Solid-State Circuits 30:533–541, 1995

    Article  Google Scholar 

  31. Fujita H, Tsai DY, Itoh T, et al: A simple method for determining the modulation transfer function in digital radiography. IEEE Trans Med Imaging MI-11:34–39, 1992

    Article  CAS  Google Scholar 

  32. American College of Radiology: Mammography Quality Control Manual, Committee on Quality Assurance in Mammography, American College of Radiology, 1999

  33. Nawfel RD, Chan KH, Wagenaar DJ, et al: Evaluation of video gray-scale display. Med Phys 19:561–567, 1992

    Article  CAS  PubMed  Google Scholar 

  34. Lewin JM, Hendrick RE, D’Orsi CJ, et al: Clinical evaluation of a full-field digital mammography prototype for cancer detection in a screening setting —Work in progress. Radiology 209P:238, 1998

    Google Scholar 

  35. Moss L, D’Orsi CJ, Karellas A, et al: Initial experience with a high resolution full field digital mammographic system. J Digit Imaging 11:110, 1998

    Article  Google Scholar 

  36. Moore RH, Kopans DB, Niklason LT, et al: Initial clinical experience with full-field digital mammography. Radiology 205P:274, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by US Army grant DAMD17-96-C-6104 to the University of Colorado Health Sciences Center, and in part by the grant R01CA59770 from the National Cancer Institute to the University of Massachusetts Medical School. The full-field digital mammography detector was developed independently by GE Corporate Research and Development with partial support from the National Cancer Institute grant 5R01CA60183. The contents of this work are solely the responsibility of the authors and do not necessarily represent the official views of NCI, NIH, or US Army

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vedantham, S., Karellas, A., Suryanarayanan, S. et al. Breast imaging using an amorphous silicon-based full-field digital mammographic system: Stability of a clinical prototype. J Digit Imaging 13, 191–199 (2000). https://doi.org/10.1007/BF03168394

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03168394

Key Words

Navigation