Journal of Physiology and Biochemistry

, Volume 60, Issue 1, pp 1–6 | Cite as

The influence of fasting on liver sulfhydryl groups, glutathione peroxidase and glutathione-S-transferase activities in the rat

  • T. Szkudelski
  • M. Okulicz
  • I. Bialik
  • K. Szkudelska
Article

Abstract

Sulfhydryl groups, glutathione peroxidase (GPx) and glutathione-S-transferase (GST) are important elements of the antioxidant defence in the organism. The efficacy of their antioxidant action is influenced by many factors. In this work, the effect of fasting on total, protein-bound and nonprotein sulfhydryl groups and on the activity of liver and serum GPx and GST in rats were determined. Male Wistar rats were divided into two groups: non-fasted and 18-hour fasted. In fasted animals liver content of nonprotein sulfhydryl groups (represented predominantly by reduced glutathione; GSH) was diminished by 22% in comparison to non-fasted group, whereas total and protein-bound-SH groups were unaffected. The activity of liver and serum GPx was unchanged in food deprived rats. In these animals the activity of GST in serum was reduced by 26%. Fasting had no significant effect on the activity of GST in the liver. Our results demonstrate that in rats deprived of food for 18 hours liver and serum GPx and GST are not involved in protection against action of reactive oxygen species formed during fasting. The observed drop in the content of liver nonprotein sulfhydryl groups without concomitant rise in the activity of GPx and GST indicates that this effect may be due to augmented degradation of GSH, its potentiated efflux from hepatocytes and formation of conjugates with intermediates arising as a result of reactive oxygen species action.

Key words

Fasting Sulfhydryl groups Glutathione peroxidase Glutathione-S-transferase 

Influencia del ayuno sobre los grupos SH, actividad glutation peroxidasa y glutation transferasa en hígado de rata

Resumen

Los grupos sulfhidrilo, la actividad glutation peroxidasa (GPx) y glutation-S-transferasa son importantes en la actividad antioxidante del organismo, cuya eficacia depende de diversos factores. En el presente trabajo, se determina la influencia del ayuno sobre el contenido hepático de grupos sulfhidrilo totales, unidos a proteínas y no protéicos en rata, así como sobre la actividad glutation peroxidasa y glutation-S-transferasa en suero e hígado. Ejemplares macho de Wistar se dividieron en dos grupos, uno control y otro sometido a ayuno de 18 horas. En este último, el contenido hepático de grupos-SH no proteico (esencialmente, glutatión reducido, GSH) disminuyó un 22% en comparación con el grupo control, sin cambios significativos en el contenido de grupos-SH totales y unidos a proteínas. La actividad de glutation peroxidasa en suero e hígado no se modifica por el ayuno, mientras que desciende la actividad glutation-S-transferasa sérica en un 26%. Tampoco varía significativamente la actividad glutation-S-transferasa en hígado. Los resultados obtenidos indican que la glutation peroxidasa y glutation-S-transferasa no están implicadas en la protección contra la acción de las especies reactivas de oxígeno formadas durante el ayuno. La caída del contenido hepático de grupos sulfhidrilo no proteicos sin aumento simultáneo de la actividad glutation peroxidasa y glutation-S-transferasa indica que el efecto puede deberse a degradación aumentada de GSH, su flujo incrementado desde los hepatocitos y formación de conjugados, como resultado de su actividad antioxidante.

Palabras clave

Ayuno Grupos sulfhidrilo Glutation peroxidasa Glutation-S-transferasa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asayama, K., Hayashibe, H., Dobashi, K., Niitsu, T., Miyao, A. and Kato, K. (1989):Diabetes Res.,12, 85–91.PubMedGoogle Scholar
  2. 2.
    Bruckner, J. V., Ramanathan, R., Lee, K. M. and Muralidhara, S. (2002):J. Pharmacol. Exp. Ther.,300, 273–281.CrossRefPubMedGoogle Scholar
  3. 3.
    Cho, E. S., Sahyoun, N. and Stegink, L. D. (1981):J. Nutr.,111, 914–922.PubMedGoogle Scholar
  4. 4.
    Duncombe, D. (1964):Clin. Chim. Acta,9, 122–125.CrossRefPubMedGoogle Scholar
  5. 5.
    Esterbauer, H. (1996):Path. Biol.,44, 25–28.Google Scholar
  6. 6.
    Foster, L. B. and Dunn, R. T. (1973):Clin. Chem.,19, 338–340.PubMedGoogle Scholar
  7. 7.
    Gambelunghe, C., Rossi, R., Micheletti, A., Mariucci, G. and Rufini, S. (2001):J. Physiol. Biochem.,57, 9–14.CrossRefGoogle Scholar
  8. 8.
    Grattagliano, I., Vendemiale, G., Caraceni, P., Domenicali, M., Nardo, B., Cavallari, A., Trevisani, F., Bernardi, M. and Altomare, E. (2000):J. Nutr.,130, 2131–2136.PubMedGoogle Scholar
  9. 9.
    Igarashi, T., Satoh, T., Ueno, K. and Kitagawa, H. (1983):J. Pharmacobiodyn.,6, 941–949.PubMedGoogle Scholar
  10. 10.
    Keck, F. S., Wolf, C. F., Veser, W. and Pfeiffer, E. F. (1990):Endocrinol. Exp.,24, 379–384.PubMedGoogle Scholar
  11. 11.
    Kirsch, M. and de Groot, H. (2001):FASEB J.,15, 1569–1574.CrossRefPubMedGoogle Scholar
  12. 12.
    Leeuwenburgh, C. and Ji, L. L. (1996):J. Nutr.,126, 1833–1843.PubMedGoogle Scholar
  13. 13.
    Liu, P. T., Ioannides, C., Symons, A. M. and Parke, D. V. (1993):Xenobiotica,23, 899–911.PubMedCrossRefGoogle Scholar
  14. 14.
    Lowry, O. H., Rosenbrough, N. J., Farr, A. L. and Randall, R. J. (1951):J. Biol. Chem.,193, 265–275.PubMedGoogle Scholar
  15. 15.
    Lu, S. C., Garcia-Ruiz, C., Kuhlenkamp, J., Ookhtens, M., Salas-Prato, M. and Kaplowitz, N. (1990):J. Biol. Chem.,265, 16088–16095.PubMedGoogle Scholar
  16. 16.
    Muzio, G., Marengo, B., Salvo, R., Semeraro, A., Canuto, R. A. and Tessitore, L. (1999):Free Radic. Biol. Med.,26, 1314–1320.CrossRefPubMedGoogle Scholar
  17. 17.
    Nakagawa, Y., Moldeus, P. and Moore, G. A. (1996):Toxicology,114, 135–145.CrossRefPubMedGoogle Scholar
  18. 18.
    Pessayre, D., Dolder, A., Artigou, J.Y., Wandscheer, J. C., Descatoire, V., Degott, C. and Benhamou, J. P. (1979):Gastroenterology,77, 264–271.PubMedGoogle Scholar
  19. 19.
    Potter, D. W. and Tran, T. B. (1993):Toxicol. Appl. Pharmacol.,120, 186–192.CrossRefPubMedGoogle Scholar
  20. 20.
    Rice-Evans, C. A., Diplock, A. T. and Symons, M. C. R. (1991): “Techniques in free radical research”. Elsevier, Amsterdam.Google Scholar
  21. 21.
    Sedlak, J. and Lindsay, R. H. (1968):Anal. Biochem.,25, 192–205.CrossRefPubMedGoogle Scholar
  22. 22.
    Shimizu, M. and Morita, S. (1990):Toxicol. Appl. Pharmacol.,103, 28–39.CrossRefPubMedGoogle Scholar
  23. 23.
    Shimuzu, M., Morita, S., Yamano, T. and Yamada, A. (1989):Toxicol. Lett.,47, 95–102.CrossRefPubMedGoogle Scholar
  24. 24.
    Sohn, O. S. and Fiala, E. S. (1995):Nutr. Cancer,23, 13–22.CrossRefPubMedGoogle Scholar
  25. 25.
    Szaleczky, E., Prechl, J., Feher, J. and Samogyi, A. (1999):Postgrad. Med. J.,75, 13–17.PubMedGoogle Scholar
  26. 26.
    Szkudelski, T., Kandulska, K. and Okulicz, M. (1998):Physiol. Res.,47, 343–346.PubMedGoogle Scholar
  27. 27.
    Thor, H., Hartzell, P., Svensson, S. A., Orrenius, S., Mirabelli, F., Marinoni, V. and Bellomo, G. (1985):Biochem. Pharmacol.,34, 3717–3723.CrossRefPubMedGoogle Scholar
  28. 28.
    Tunon, M. J., Gonzalez, P., Lopez, P., Salido, G. M. and Madrid, J. A. (1992):Arch. Int. Physiol. Biochim. Biophys.,100, 83–87.CrossRefPubMedGoogle Scholar
  29. 29.
    Wohaieb, S. A. and Godin, D. V. (1987):Diabetes,36, 169–173.CrossRefPubMedGoogle Scholar

Copyright information

© Universidad de Navarra 2004

Authors and Affiliations

  • T. Szkudelski
    • 1
  • M. Okulicz
    • 1
  • I. Bialik
    • 1
  • K. Szkudelska
    • 1
  1. 1.Department of Animal Physiology and BiochemistryUniversity of AgriculturePoznanPoland

Personalised recommendations