Skip to main content
Log in

A numerical approach to interface curves for some nonlinear diffusion equations

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

Abstract

Nonlinear diffusion equations in one dimensional spacev t =(v m) xx +vF(v) (m>1) appear in the fields of fluid dynamics, combustion theory, plasma physics and population dynamics. The most interesting phenomenon is the finite speed of propagation. Specifically, if the initial function has compact support, the solution has also compact support for later times, and there appears an interface betweenv>0 andv=0. The aim of this paper is to propose a finite difference scheme possessing the property that numerical solutions as well as numerical interfaces converge to the exact ones. Numerical examples are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Aronson, L. A. Caffarelli and S. Kamin, How an initially stationary interface begins to move in porous medium flow, SIAM J. Math. Anal.,14 (1983), 639–658.

    Article  MATH  MathSciNet  Google Scholar 

  2. V. F. Baklanovskaya, The numerical solution of a one-dimensional problem for equations of nonstationary filtrations. Ž. Vyčisl. Mat. i Mat. Fiz.,1 (1961), 461–469.

    Google Scholar 

  3. G. I. Barenblatt, On some unsteady motions of a liquid and a gas in a porous medium, Prinkl. Mat. Meh.,16 (1952), 67–78.

    MATH  MathSciNet  Google Scholar 

  4. H. Berestycki, B. Nicolaenko and B. Scheurer. Traveling wave solutions to reaction diffusion systems modeling combustion, Contemporary Math.17, 1983, 189–208.

    MATH  MathSciNet  Google Scholar 

  5. J. G. Berryman and C. J. Holland, Stability of the separable solution for fast diffusion, Arch. Rational Mech. Anal.,74 (1980), 379–388.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Bertsch, R. Kersner and L. A. Peletier, Positivity versus localization in degenerate diffusion equations, to appear.

  7. H. Brézis and M. G. Crandall, Uniqueness of solutions fo the initial-value problem foru t δϕ(u)=0, J. Math. Pures Appl.,58 (1979), 153–163.

    MATH  MathSciNet  Google Scholar 

  8. J. Buckmaster, Viscous sheets advancing over dry beds, J. Fluid Mech.,81 (1977), 735–756.

    Article  MATH  MathSciNet  Google Scholar 

  9. E. A. Carl, Population control in arctic ground squirrels, Ecology,52 (1971), 395–413.

    Article  Google Scholar 

  10. E. DiBenedetto and D. Hoff, An interface tracking algorithm for the porous medium equation, to appear in Trans. Amer. Math. Soc.

  11. J. L. Graveleau and P. Jamet, A finite difference approach to some degenerate nonlinear parabolic equations, SIAM J. Appl. Math.,20 (1971), 199–223.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. E. Gurtin and R. C. MacCamy, On the diffusion of biological populations, Math. Biosci.,33 (1977), 35–49.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Hoff, A linearly implicit finite difference scheme for the one-dimensional porous medium equation, preprint.

  14. A. S. Kalashnikov, The propagation of disturbances in problems of non-linear heat conduction with absorption, Ž, Vyčisl. Mat. i Mat. Fiz.,14 (1974), 891–905.

    Google Scholar 

  15. B. F. Knerr, The behaviour of the support of solutions of the equation of nonlinear heat conduction with absorption in one dimension. Trans. Amer. Math. Soc.,249 (1979), 409–424.

    Article  MATH  MathSciNet  Google Scholar 

  16. C. J. Krebs and J. H. Myers. Population cycles in small mammals, Adv. in Ecol. Res.,8 (1974), 267–399.

    Article  Google Scholar 

  17. E. W. Larsen and G. C. Pomraning, Asymptotic analysis of nonlinear Marshak waves, SIAM J. Appl. Math.,39 (1980), 201–212.

    Article  MATH  MathSciNet  Google Scholar 

  18. W. I. Newman, Some exact solutions to non-linear diffusion problem in population genetics and combustion, J. Theoret. Biol.,85 (1980), 325–334.

    Article  MathSciNet  Google Scholar 

  19. W. I. Newman and C. Sagan, Galactic civilizations: Population dynamics and interstellar diffusion, preprint.

  20. R. E. Pattle, Diffusion from an instantaneous point source with a concentration-dependent coefficient, Quart. J. Mech. Appl. Math.,12 (1959), 407–409.

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Y. Polubarinova-Kochina, Theory of Ground Water Movement. Princeton Univ. Press, 1962.

  22. B. Quinn, Solutions with shocks, an example of anL 1-contractive semigroup. Comm. Pure Appl. Math.,24 (1971), 125–132.

    Article  MathSciNet  Google Scholar 

  23. P. Rosenau and S. Kamin, Thermal waves in an absorbing and convecting medium, Physica,8D (1983), 273–283.

    MathSciNet  Google Scholar 

  24. A. E. Scheidegger, The Physics of Flow through Porous Media, Third edition, University of Toronto Press, 1974.

  25. K. Tomoeda and M. Mimura, Numerical approximations to interface curves for a porous media equation, Hiroshima Math. J.,13 (1983), 273–294.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Mimura, M., Nakaki, T. & Tomoeda, K. A numerical approach to interface curves for some nonlinear diffusion equations. Japan J. Appl. Math. 1, 93–139 (1984). https://doi.org/10.1007/BF03167863

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167863

Key words

Navigation