Skip to main content
Log in

Heat kernels on infinite graph networks and deformed Sierpinski gaskets

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

Abstract

We shall calculate the local asymptotic decay order of heat kernels on general infinite graph networks. We shall also study deformed Sierpinski gaskets by introducing a new dimension closely related to the spectral dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Alexander and R. Orbach, Density of states on fractals. J. Phys. Lett.,43 (1982), 625–631.

    Article  Google Scholar 

  2. K. Aomoto and Y. Kato, Green functions and spectra on free products of cyclic groups. Ann. Inst. Fourier,38 (1988), 59–85.

    MATH  MathSciNet  Google Scholar 

  3. M. T. Barlow and E.A. Perkins, Brownian motion on the Sierpinski gasket. Probab. Th. Rel. Fields,79 (1988), 543–623.

    Article  MATH  MathSciNet  Google Scholar 

  4. J.L. Birman and J.P. Lu, Percolation and scaling on a quasilattice. J. Stat. Phys.,46 (1987), 1057–1066.

    Article  MathSciNet  Google Scholar 

  5. E.A. Carlen, S. Kusuoka and D.W. Stroock, Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré, Sup. no 2 (1987), 245–287.

    MathSciNet  Google Scholar 

  6. P. Cartier, Fonctions harmoniques sur un arbre. Symposia Math., Vol. IX, 1972, 203–270.

    MathSciNet  Google Scholar 

  7. J. Dodziuk and L. Karp, Spectral and function theory for combinatorial Laplacians. Contemporary Math., 73 1988, 25–40.

    MathSciNet  Google Scholar 

  8. G. Doetsch, Handbuch der Laplace-transformation I. Birkhäuser, Basel, 1950.

    MATH  Google Scholar 

  9. E. Domany, S. Alexander, D. Bensimon and L.P. Kadanoff, Solutions to the Schrödinger equation on some fractal lattices, Phys. Rev., B28 (1983), 3110–3123.

    Article  MathSciNet  Google Scholar 

  10. P.G. Doyle and J.L. Snell, Random Walks and Electric Networks. Math. Asso. America, Washington D.C., 1984.

    MATH  Google Scholar 

  11. R.J. Duffin, The extremal length of a network. J. Math. Anal. Appl.,5 (1962), 200–215.

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Gaveau, M. Okada and T. Okada, Explicit heat kernels on graphs and spectral analysis. To appear in Proceedings of the special year in Several Complex Variables at Mittag-Leffler ’87–’88 (eds. J.E. Fornaess and C.O. Kiselman), Princeton Univ. Press, 1990.

  13. Y. Gefen, A. Aharony, B. Mandelbrot and S. Kirkpatrick, Solvable fractal family and its possible relation to the backbone at percolation. Phys. Rev. Lett.,47 (1981), 1771–1774.

    Article  MathSciNet  Google Scholar 

  14. P. Gerl, Continued fraction methods for random walks onN and on trees. Probability Measures on Groups VII (Oberwolfach 1983), Lecture Notes in Math. 1064, Springer-Verlag, 1984, 31–146.

  15. M. Hata, On the structure of self-similar sets. Japan J. Appl. Math.,2 (1985), 381–414.

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Hattori, T. Hattori and H. Watanabe, New approximate renormalization method on fractals. Phys. Rev., A32 (1985), 3730–3733.

    Article  Google Scholar 

  17. J. Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J.,30 (1981), 713–747.

    Article  MATH  MathSciNet  Google Scholar 

  18. K. Itô and H.P. McKean, Jr., Diffusion Processes and Their Sample Paths. Springer-Verlag, Berlin, 1965.

    MATH  Google Scholar 

  19. S. Kakutani, Two-dimensional Brownian motion and harmonic functions. Proc. Japan Acad.,20 (1944), 706–714.

    Article  MATH  MathSciNet  Google Scholar 

  20. H. Kesten, Subdiffusive behavior of random walk on a random cluster. Ann. Inst. H. Poincaré,22 (1986), 425–487.

    MATH  MathSciNet  Google Scholar 

  21. J. Kigami, A harmonic calculus on the Sierpinski spaces. Japan J. Appl. Math.,6 (1989), 259–290.

    Article  MATH  MathSciNet  Google Scholar 

  22. S. Kusuoka, A diffusion process on a fractal. Probabilistic Methods in Mathematics and Physics (Katata 1985), Kinokuniya-North Hollanld, Tokyo, 1987, 251–274.

    Google Scholar 

  23. T. Lyons and D. Sullivan, Function theory, random paths and covering spaces. J. Differential Geom.,19 (1984), 299–323.

    MATH  MathSciNet  Google Scholar 

  24. B.B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Co., San Fransisco, 1983.

    Google Scholar 

  25. P.A. Meyer, Probability and Potentials. Blaisdell, Waltham, Massachusetts, 1966.

    MATH  Google Scholar 

  26. S. Nicaise, Spectre des reseaux topologiques finis. Bull. Sci. Math., 2e ser.,111 (1987), 401–413.

    MATH  MathSciNet  Google Scholar 

  27. T. Okada, Asymptotic behaviour of skew conditional heat kernels on graph network. Preprint.

  28. H. Osada, Isoperimetric dimension and estimates of heat kernels of pre Sierpinski carpets. Preprint.

  29. M. Picardello and W. Woess, Random walks on amalgams. Monatsh. Math.,100 (1985), 21–33.

    Article  MATH  MathSciNet  Google Scholar 

  30. R. Rammal, Nature of eigenstates on fractal structures. Phys. Rev., B28 (1983), 4871–4874.

    Article  MathSciNet  Google Scholar 

  31. R. Rammal and G. Toulouse, Random walks on fractal structures and percolation clusters. J. Phys. Lett.,44 (1983), 13–22.

    Article  Google Scholar 

  32. J.P. Roth, Le spectre du laplacien sur un graphe. Lecture Notes in Math. 1096, Springer, 1984, 521–539.

  33. S. Sawyer, Isotropic random walks in a tree. Z. Wahrsch. Verw. Gebiete,42 (1978), 279–292.

    Article  MATH  MathSciNet  Google Scholar 

  34. T. Shima, On eigenvalue problems for the random walks on the Sierpinski pre-gaskets. Preprint.

  35. N. Th. Varopoulos, Isoperimetric inequalities and Markov chains. J. Funct. Anal.,63 (1985), 215–239.

    Article  MATH  MathSciNet  Google Scholar 

  36. J.B. Walsh, A diffusion with discontinuous local time, Astérisque,52–53 (1978), 37–45.

    Google Scholar 

  37. H. Watanabe, Spectral dimensions of a wire network. J. Phys., A1 (1985), 2807–2823.

    Article  Google Scholar 

  38. D.V., Widder, The Laplace Transform. Princeton Univ. Press, 1946.

  39. M. Yamasaki, Biharmonic Green function of an infinite network. Mem. Fac. Sci. Shimane Univ.,14 (1980), 55–62.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Okada, M., Sekiguchi, T. & Shiota, Y. Heat kernels on infinite graph networks and deformed Sierpinski gaskets. Japan J. Appl. Math. 7, 527–543 (1990). https://doi.org/10.1007/BF03167858

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167858

Key words

Navigation