Skip to main content
Log in

A mathematical model on chemical interfacial reactions

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper discusses a sort of parabolic system with nonlinear boundary conditions, which comes from the chemical interfacial models. The results obtained here are the uniqueness and the existence of the global solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.D. Alikakos, An application of the invariance principle to reaction-diffusion equations. J. Differential Equations,33 (1979), 201–225.

    Article  MATH  MathSciNet  Google Scholar 

  2. N.D. Alikakos,L p bounds of solutions of reaction-diffusion equations. Comm. Partial Differential Equations,4 (1979), 827–868.

    Article  MATH  MathSciNet  Google Scholar 

  3. N.D. Alikakos, Regularity and asymptotic behavior for the second order parabolic equation with nonlinear boundary condition inL p. J. Differential Equations,39 (1981), 311–344.

    Article  MATH  MathSciNet  Google Scholar 

  4. D.G. Aronson and L.A. Peletier, Global stability of symmetric and asymmetric concentration profiles in catalyst particles. Arch. Rational Mech. Anal.,54 (1974), 175–204.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Brézis, Opérateurs Maximaux Monotone et Semigroupes de Contractions dans les Espaces de Hilbert. Math. Studies, 5, North-Holland, Amsterdam, 1973.

    Google Scholar 

  6. A. Friedman, Partial Differential Equations. Holt-Rinehart-Winston, New York, 1969.

    MATH  Google Scholar 

  7. H. Ishii, On a certain estimate of the free boundary in the Stefan problem. J. Differential Equations,42 (1981), 106–115.

    Article  MATH  MathSciNet  Google Scholar 

  8. Y. Kawano and F. Nakashio, Effect of an interfacial reaction on the extraction rate. Internat. Chem. Engrg.,19 (1979), 131–136.

    Google Scholar 

  9. Y. Kawano, K. Kusano, K. Kondo and F. Nakashio, Extraction rate of acetic acid by long-chain alkylamine in horizontal rectangular channel. Kagaku Kōgaku Ronbunshu,9 (1983), 44–51.

    Google Scholar 

  10. O.A. Ladyženskaya, V.A. Solonikov and N.N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type. Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, R.I., 1968.

    Google Scholar 

  11. J. Moser, A Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math.,17 (1964), 101–134.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Tanabe, Equations of Evolution, Pitmann, London, 1979.

    MATH  Google Scholar 

  13. S. Yotsutani, Stefan problems with the unilateral boundary condition on the fixed boundary I. Osaka J. Math.,19 (1982), 365–403.

    MATH  MathSciNet  Google Scholar 

  14. Y. Yamada and S. Yotsutani, Note on chemical interfacial reaction models. Proc. Japan Acad. Ser. A,62 (1986), 379–381.

    Article  MATH  MathSciNet  Google Scholar 

  15. Y. Yamada and S. Yotsutani in preparation.

  16. Y. Kawano and K. Kusano, Extraction rate of propionic acid with long-chain alkylamine in horizontal rectangular channel. J. Chem. Engrg. Japan,16 (1983), 519–521.

    Article  Google Scholar 

  17. Y. Kawano, K. Kusano and F. Nakashio, Extraction rates of oxalic, nitric and hydrochloric acid by amberlite LA-2 in horizontal rectangular channel, J. Chem. Engrg. Japan,17 (1984), 343–345.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Yamada, Y., Yotsutani, S. A mathematical model on chemical interfacial reactions. Japan J. Appl. Math. 7, 369–398 (1990). https://doi.org/10.1007/BF03167850

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167850

Key words

Navigation