Skip to main content

Bifurcation of a helical wave from a traveling wave

Abstract

Spin mode instabilities have been observed in solid-state combustion reactions and in propagating fronts of polymerization among others, that is, when some conditions are changed, a planar traveling wave may lose its stability and there appears a planar wave or a helical wave propagating in the form of spiral encircling the cylindrical sample with several reaction spots. In the present paper, we study the existing condition of stable helical waves and the transition process of wave patterns from a static mode to pulsating and/or helical modes. By using a full system of reaction-diffusion equations, we clarify that a stable helical wave can bifurcate directly from a planar traveling wave and that helical waves with different numbers of reaction spots can coexist stably.

This is a preview of subscription content, access via your institution.

References

  1. M.R. Booty, S.B. Margolis and B.J. Matkowsky, Interaction of pulsating and spinning waves in condensed phase combustion. SIAM J. Appl. Math.,46, No. 5 (1986), 801–843.

    MATH  Article  MathSciNet  Google Scholar 

  2. S.D. Dunmead, D.W. Readey and C.E. Semler, Kinetics of combustion synthesis in the Ti-C and Ti-C-Ni systems. J. Amer. Ceram. Soc.,72, No. 12 (1989), 2318–2324.

    Article  Google Scholar 

  3. D. Henry, Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics840, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  4. E. Logak, Équations de réaction-diffusion et ondes progressives dans des modèles de combustion et de transition de phase. THÉSE de DOCTORAT de l’UNIVERSITÉ PARIS 6, 1993.

  5. Y.M. Maksimov, A.T. Pak, G.B. Lavrenchuk, Y.S. Naiborodenko and A.G. Merzhanov, Spin combustion of gasless systems. Combustion, Explosion and Shock Waves,15 (1979), 415–418.

    Article  Google Scholar 

  6. S.B. Margolis, An asymptotic theory of condensed two-phase flame propagation. SIAM J. Appl. Math.,43, No. 2 (1983), 351–369.

    MATH  Article  MathSciNet  Google Scholar 

  7. S.B. Margolis, H.G. Kaper, G.K. Leaf and B.J. Matkowsky, Bifurcation of pulsating and spinning reaction fronts in condensed two-phase combustion. Combust. Sci. and Tech.,43 (1985), 127–165.

    Article  Google Scholar 

  8. S.B. Margolis, B.J. Matkowsky and M.R. Booty, New modes of quasiperiodic burning in combustion synthesis. Combustion and Plasma Synthesis of High-Temperature Materials (eds. Z.A. Munir and J.B. Holt), VCH, New York, 1990, 73–82.

    Google Scholar 

  9. A.G. Merzhanov, Self-propagating high-temperature synthesis: Twenty years of search and findings. Combustion and Plasma Synthesis of High-Temperature Materials (eds. Z.A. Munir and J.B. Holt), VCH, New York, 1990, 1–53.

    Google Scholar 

  10. M.J. Metcalf, J.H. Merkin and S.K. Scott, Oscillating wave fronts in isothermal chemical systems with arbitrary powers of autocatalysis. Proc. R. Soc. Lond. A,447 (1994), 155–174.

    MATH  Article  MathSciNet  Google Scholar 

  11. Z.A. Munir and U. Anselmi-Tamburini, Self-propagating Exothermic Reactions: the Synthesis of High-temperature Materials by Combustion. North-Holland, Amsterdam, 1989.

    Google Scholar 

  12. M. Nagayama, T. Ikeda, T. Ishiwata, N. Tamura and M. Ohyanagi, Three-dimensional numerical simulation of helically propagating combustion waves. J. Material Synthesis and Processing,9, No. 3 (2001), 153–163.

    Article  Google Scholar 

  13. Y. Nishiura, M. Mimura, H. Ikeda and H. Fujii, Singular limit analysis of stability of traveling wave solution in bistable reaction-diffusion systems. SIAM J. Math. Anal.,21, No. 1 (1990), 85–122.

    MATH  Article  MathSciNet  Google Scholar 

  14. J.A. Pojman, V.M. Ilyashenko and A.M. Khan, Spin mode instabilities in propagating fronts of polymerization. Physica D,84 (1995), 260–268.

    Article  Google Scholar 

  15. G. Sivashinsky, On spinning propagation of combustion waves. SIAM J. Appl. Math.,40 (1981), 432–438.

    MATH  Article  MathSciNet  Google Scholar 

  16. M. Taniguchi and Y. Nishiura, Instability of planar interfaces in reaction-diffusion systems. SIAM J. Math. Anal.,25, No. 1 (1994), 99–134.

    MATH  Article  MathSciNet  Google Scholar 

  17. D. Terman, Stability of planar wave solutions to a combustion model. SIAM J. Math. Anal.,21, No. 5 (1990), 1139–1171.

    MATH  Article  MathSciNet  Google Scholar 

  18. A. Volpert, V. Volpert and V. Volpert, Traveling Wave Solution of Parabolic Systems. Transactions of Mathematical Monographs140, AMS, 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Ikeda.

About this article

Cite this article

Ikeda, T., Nagayama, M. & Ikeda, H. Bifurcation of a helical wave from a traveling wave. Japan J. Indust. Appl. Math. 21, 405 (2004). https://doi.org/10.1007/BF03167591

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1007/BF03167591

Key words

  • wave pattern
  • planar traveling wave
  • planar pulsating wave
  • helical wave
  • Hopf bifurcation