Skip to main content
Log in

Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic Monge-Ampère equation

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

The main goal of this article is to review some recent applications of operator-splitting methods. We will show that these methods are well-suited to the numerical solution of outstanding problems from various areas in Mechanics, Physics and Differential Geometry, such as the direct numerical simulation of particulate flow, free boundary problems with surface tension for incompressible viscous fluids, and the elliptic real Monge-Ampère equation. The results of numerical experiments will illustrate the capabilities of these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Allain, Small-time existence for the Navier-Stokes equations with a free surface. Appl. Math. Optim.,16 (1987), 37–50.

    Article  MATH  MathSciNet  Google Scholar 

  2. E. Bänsch, Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numer. Math.,88 (2001), 203–235.

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Bänsch and B. Hön, Numerical simulation of a silicon floating zone with a free capillary surface. Scientific Computing in Chemical Engineering II, Vol. 1, F. Keli, W. Mackens, H. Voss and J. Werther eds., 1999, 328–335.

  4. J.T. Beale, The initial value problem for the Navier-Stokes equations with a free-surface. Comm. Pure Appl. Math.,34 (1981), 359–392.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Bercovier and O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math.,33 (1979), 211–224.

    Article  MATH  MathSciNet  Google Scholar 

  6. J.U. Brackbill, D.B. Kothe and C. Zemach, A continuum method for modeling surface tension. J. Comput. Phys.,100 (1992), 335–354.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Caboussat, Analysis and Numerical Simulation of Free Surface Flows. Ph.D. Dissertation, Ecole Polytechnique Fédérale de Lausanne, Department of Mathematics, Lausanne, Switzerland, 2003.

    Google Scholar 

  8. A. Caboussat, A numerical method for the simulation of free surface flows with surface tension. Comp. and Fluids,35 (2006), 1205–1216.

    Article  Google Scholar 

  9. L.A. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations. American Mathematical Society, Providence, RI, 1995.

    MATH  Google Scholar 

  10. L.A. Caffarelli and M. Milman, eds., Monge-Ampère Equation: Application to Geometry and Optimization. American Math. Society, Providence, RI, 1999.

    Google Scholar 

  11. T.F. Chan and R. Glowinski, Numerical methods for a class of mildly nonlinear elliptic equations. Atas do Decimo Primeiro Coloquio Brasileiro do Matematicas, Vol. I, C.N.D.T./IMPA, Rio do Janeiro, 1978, 279–318.

  12. A.J. Chorin, Numerical study of a slightly viscous flow. J. Fluid Mech.,57 (1973), 785–796.

    Article  MathSciNet  Google Scholar 

  13. A.J. Chorin, T.J.R. Hughes, M.F. McCracken and J.E. Marsden, Product formulas and numerical algorithms. Comm. Pure Appl. Maths.,31 (1978), 205–256.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II. Wiley Interscience, New York, NY, 1989.

    Google Scholar 

  15. C. Cuvelier and R.M. Schulkes, Some numerical methods for the computation of capillary free boundaries governed by the Navier-Stokes equations. SIAM Review,32 (1990), 355–423.

    Article  MATH  MathSciNet  Google Scholar 

  16. E.J. Dean and R. Glowinski, Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach. C.R. Acad. Sci. Paris, Sér. I,336 (2003), 779–784.

    MATH  MathSciNet  Google Scholar 

  17. E.J. Dean and R. Glowinski, Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: a least squares approach. C.R. Acad. Sci. Paris, Sér. I,339 (2004), 887–892.

    MATH  MathSciNet  Google Scholar 

  18. E.J. Dean and R. Glowinski, Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type. Comp. Meth. Appl. Mech. Engin.,195 (2006), 1344–1386.

    Article  MATH  MathSciNet  Google Scholar 

  19. E.J. Dean and R. Glowinski, A wave equation approach to the numerical solution of the Navier-Stokes equations for incompressible viscous flow. C.R. Acad. Sci. Paris, Ser. I,325 (1997), 789–797.

    MathSciNet  Google Scholar 

  20. E.J. Dean, R. Glowinski and T.W. Pan, A wave equation approach to the numerical simulation of incompressible viscous flow modeled by the Navier-Stokes equations. Mathematical and Numerical Aspects of Wave Propagation, J.A. De Santo ed., SIAM, Philadelphia, PA, 1998, 65–74.

    Google Scholar 

  21. B. Desjardin and M.J. Esteban, On weak solution for fluid-rigid structure interaction: compressible and incompressible models. Arch. Rational Mech. Anal.,146 (1999), 59–71.

    Article  Google Scholar 

  22. J. Dieudonné, Panorama des Mathématiques Pures: Le Choix Bourbachique. Editions Jacques Gabay, Paris, 2003.

    Google Scholar 

  23. J. Douglas and H.H. Rachford, On the numerical solution of the heat conduction problem in 2 and 3 space variables. Trans. Am. Math. Soc.,82 (1956), 421–439.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Fortin and R. Glowinski, Augmented Lagrangians Methods: Application to the Numerical Solution of Boundary-Value Problems. North-Holland, Amsterdam, 1983.

    Google Scholar 

  25. F. Foss, On the exact point-wise interior controllability of the scalar wave equation and solution of nonlinear elliptic eigenproblems. PhD dissertation, Department of Mathematics, University of Houston, Houston, Texas, 2006.

    Google Scholar 

  26. V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin, 1986.

    MATH  Google Scholar 

  27. R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, New York, NY, 1984.

    MATH  Google Scholar 

  28. R. Glowinski, Finite Element Methods for Incompressible Viscous Flow. Handbook of Numerical Analysis, Vol. IX, P.G. Ciarlet and J.L. Lions eds., North-Holland, Amsterdam, 2003, 3–1176.

    Google Scholar 

  29. R. Glowinski and G. Guidoboni, Hopf bifurcation in viscous incompressible flow down an inclined plane: a numerical approach. J. Math. Fluid Mech.,9 (2007), 1–21.

    Article  MathSciNet  Google Scholar 

  30. R. Glowinski and L.H. Juárez, Finite element method and operator-splitting for a time-dependent viscous incompressible free-surface flow. Comp. Fluid Dyn. J.,12 (2003), 459–468.

    Google Scholar 

  31. R. Glowinski and P. Le Tallec, Augmented Lagrangians and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia, PA, 1989.

    Google Scholar 

  32. R. Glowinski, J.L. Lions and R. Tremolières, Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam, 1981.

    MATH  Google Scholar 

  33. R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph and J. Périaux, A fictitious domain approach to the direct numerical simulation of incompressible viscous fluid flow past moving rigid bodies: application to particulate flow. J. Comp. Phys.,169 (2001), 363–426.

    Article  MATH  Google Scholar 

  34. C. Grandmont and Y. Maday, Existence for an unsteady fluid-structure interaction problem. Math. Model. Num. Anal.,34 (2000), 609–636.

    Article  MATH  MathSciNet  Google Scholar 

  35. H.H. Hu., N.A. Patankar and M.Y. Zhu, Direct numerical Simulation of fluid-solid systems using arbitrary Lagrangian—Eulerian techniques. J. Comp. Phys.,169 (2001), 427–462.

    Article  MATH  MathSciNet  Google Scholar 

  36. A.A. Johnson and T.E. Tezduyar, Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comp. Meth. Appl. Mech. Eng.,119 (1994), 73–94.

    Article  MATH  Google Scholar 

  37. A.A. Johnson and T. Tezduyar, 3-D simulations of fluid-particle interactions with the number of particles reaching 100. Comp. Methods Appl. Mech. Engrg.,145 (1997), 301–321.

    Article  MATH  Google Scholar 

  38. D.D. Joseph and L. Preziosi, Stability of rigid motions and coating films in bi-component flows of immiscible liquids. J. Fluid Mech.,185 (1987), 323–351.

    Article  MATH  Google Scholar 

  39. L.H. Juárez, P. Saavedra and M. Salazar, Computational study of a free-boundary model. Advances in Optimization and Numerical Analysis, S. Gomez and J.P. Hennart eds., Kluwer, Dortrecht, 1994, 245–260.

    Google Scholar 

  40. J.B. Keller and M.J. Miksis, Surface tension driven flows. SIAM J. Appl. Math.,43 (1983), 268–277.

    Article  MATH  MathSciNet  Google Scholar 

  41. S.F. Kistler and L.E. Scriven, Coating flow theory by finite element methods and asymptotic analysis of the Navier-Stokes system. Inter. J. Numer. Meth. Fluids,4 (1984), 207–229.

    Article  MATH  Google Scholar 

  42. P. Le Tallec, Numerical methods for nonlinear three-dimensional elasticity. Handbook of Numerical Analysis, Vol. III, P.G. Ciarlet and J.L. Lions eds., North-Holland, Amsterdam, 1994, 465–622.

    Google Scholar 

  43. G.I. Marchuk, Splitting and alternating direction methods. Handbook of Numerical Analysis, Vol. I, P.G. Ciarlet and J.L. Lions eds., North-Holland, Amsterdam, 1990, 197–462.

    Google Scholar 

  44. M. Marion and R. Temam, Navier-Stokes equations. Handbook of Numerical Analysis, Vol. VI, P.G. Ciarlet and J.L. Lions eds., North-Holland, Amsterdam, 1998, 503–689.

    Google Scholar 

  45. V. Maronnier, M. Picasso and J. Rappaz, Numerical simulation of free-surface flows. J. Comp. Phys.,155 (1999), 439–455.

    Article  MATH  MathSciNet  Google Scholar 

  46. V. Maronnier, M. Picasso and J. Rappaz, Numerical simulation of three dimensional free-surface flows. Int. J. Numer. Meth. Fluids,42 (2003), 697–716.

    Article  MATH  MathSciNet  Google Scholar 

  47. B. Maury, A characteristics-ALE method for the unsteady 3-D Navier-Stokes equations with a free-surface. Int. J. Comp. Fluids Dynamics,6 (1996), 175–188.

    Article  Google Scholar 

  48. B. Maury, Direct simulation of 2-D fluid-particle flows in bi-periodic domains, J. Comp. Phys.,156 (1999), 325–351.

    Article  MATH  MathSciNet  Google Scholar 

  49. G. Müller and A. Ostrogorsky, Convection in melt growth. Handbook of Crystal Growth 2B, D.T. Hurle ed., North-Holland, 1994, 709–819.

  50. J.A. Nietsche, Free-boundary problems for Stokes flows and finite element/ methods. Ecuadiff 6, Lecture Notes in Math.,1192, Springer-Verlag, Berlin, 1986, 327–332.

    Google Scholar 

  51. T. Nishida, Y. Teramoto and H. Yoshihara, Hopf bifurcation in viscous incompressible flow down an inclined plane. J. Math. Fluid Mech.,7 (2005), 29–71.

    Article  MATH  MathSciNet  Google Scholar 

  52. J.R. Ockendon, S. Howison, A. Lacey and A. Movchan, Applied Partial Differential Equations. Oxford University Press, Oxford, UK, 1999.

    MATH  Google Scholar 

  53. M. Padula and V.A. Solonikov, On Rayleigh-Taylor stability. Ann. Univ. Ferrara, Sez. VII, Sc. Mat., XLXI, 2000, 307–336.

  54. T.W. Pan and R. Glowinski, A projection/wave-like equation method for the numerical simulation of incompressible viscous fluid flow modeled by the Navier-Stokes equations. Comput. Fluid Dyn. J.,9 (2000), 28–42.

    Google Scholar 

  55. T.W. Pan and R. Glowinski, Direct simulation of the motion of neutrally buoyant circular cylinders in plane Poiseuille flow. J. Comp. Phys.,181 (2002), 260–279.

    Article  MATH  MathSciNet  Google Scholar 

  56. D.H. Peaceman and H.H. Rachford, The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math.,3 (1955), 28–41.

    Article  MATH  MathSciNet  Google Scholar 

  57. O. Pironneau, Finite Element Methods for Fluids. J. Wiley, Chichester, U.K., 1989.

    Google Scholar 

  58. C. Pozrikidis, The flow of a liquid film along a periodic wall. J. Fluid Mech.,188 (1988), 275–300.

    Article  MATH  Google Scholar 

  59. W.G. Pritchard, Instability and chaotic behavior in a free-surface flow. J. Fluid Mech.,165 (1986), 1–60.

    Article  MathSciNet  Google Scholar 

  60. W.G. Pritchard, L.R. Scott and S.J. Tavener, Numerical and asymptotic methods for certain viscous free-surface flows. Phil. Trans. Royal Soc. London, A,340 (1992), 1–45.

    Article  MATH  Google Scholar 

  61. V.V. Pukhnachëv, Hydrodynamic free-boundary problems. Nonlinear Partial Differential and their Applications, Collège de France Seminar, Paris, Vol.III, Pitman, Boston, 1982, 301–308.

    Google Scholar 

  62. P. Saavedra and L.R. Scott, Variational formulation of a model free-boundary problem. Math. Comp.,57 (1991), 451–475.

    Article  MATH  MathSciNet  Google Scholar 

  63. H. Saito and L.E. Scriven, Study of coating flow by the finite element method. J. Comp. Phys.,42 (1981), 53–76.

    Article  MATH  Google Scholar 

  64. J.A. San Martin, V. Starovoitov and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal.,161 (2002), 113–147.

    Article  MATH  MathSciNet  Google Scholar 

  65. D. Schwabe, Surface-tension driven flow in crystal growth melts. Crystal Growth Properties and Applications 11, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  66. H. Sigurgeirson, A.M. Stuart and J. Wan, Collision detection for particles in flow. J. Comp. Phys.,172 (2001), 766–807.

    Article  Google Scholar 

  67. V.A. Solonikov, On the Stokes equations in domains with non-smooth boundaries and on viscous incompressible flow with a free surface. Nonlinear Partial Differential and their Applications, Collège de France Seminar, Paris, Vol. III, Pitman, Boston, 1982, 340–423.

    Google Scholar 

  68. G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal.,5 (1968), 506–517.

    Article  MATH  MathSciNet  Google Scholar 

  69. T.E. Tezduyar, Stabilized finite element formulations for incompressible flow computations. Adv. Appl. Mech.,28 (1992), 1–44.

    Article  MATH  MathSciNet  Google Scholar 

  70. T.E. Tezduyar, M. Behr, S. Mittal and J. Liou, A new strategy for finite element computations involving moving boundaries and interfaces—The deforming-spatial-domain/space-time procedure: computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comp. Meth. Appl. Mech. Eng.,94 (1992), 353–371.

    Article  MATH  MathSciNet  Google Scholar 

  71. S. Turek, A comparative study of time-stepping techniques for the incompressible Navier-Stokes equations: from fully implicit nonlinear schemes to semi-implicit projection methods. Int. J. Numer. Meth. Fluids,22 (1996), 987–1011.

    Article  MATH  MathSciNet  Google Scholar 

  72. M.W. Williams, D.B. Kothe and E.G. Puckett, Accuracy and convergence of continuum surface tension models. Fluid Dynamics at Interface, W. Shyy and R. Narayanan, eds., Cambridge University Press, 1999, 294–305.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Glowinski.

Additional information

Dedicated to J. Douglas, G.I. Marchuk, D.H. Peaceman and H.H. Rachford

About this article

Cite this article

Glowinski, R., Dean, E.J., Guidoboni, G. et al. Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic Monge-Ampère equation. Japan J. Indust. Appl. Math. 25, 1 (2008). https://doi.org/10.1007/BF03167512

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1007/BF03167512

Key words

Navigation