Skip to main content

An integrodifference model for biological invasions in a periodically fragmented environment

Abstract

An integrodifference model that describes the spread of invading species on a periodically fragmented environment is analyzed to derive an asymptotic speed of range expansion. We consider the case that the redistribution kernel is given by an exponentially damping function and the population growth is subject to a Ricker function in which the intrinsic growth rate is specified by a spatially periodic step-function. We first derive a condition for successful invasion of a small propagule, and then provide a mathematical formula for the rate of spread. Based on the speeds calculated from the formula for various combinations of parameter values, we discuss how the habitat fragmentation influences the invasion speed. The speeds are also compared with the corresponding speeds when the dispersal kernel is replaced by a Gaussian.

This is a preview of subscription content, access via your institution.

References

  1. H. Berestycki and F. Hamel, Front propagation in periodic excitable media. Communications on Pure and Applied Mathematics,55 (2002), 949–1032.

    MATH  Article  MathSciNet  Google Scholar 

  2. H. Berestycki, N. Nadirashvili and F. Hamel, The speed of propagation for KPP type problems. I: Periodic framework. Journal of the European Mathematical Society,7 (2005), 173–214.

    MATH  MathSciNet  Article  Google Scholar 

  3. F. van den Bosch, R. Hengeveld and J.A.J. Metz, Analyzing the velocity of animal range expansion. J. Biogeography,19 (1992), 135–150.

    Article  Google Scholar 

  4. M. Bramson, Convergence of solutions of the Kolmogorov equation to traveling waves. Mem. Am. Math. Soc.,285 (1983), 1–190.

    MathSciNet  Google Scholar 

  5. S.R. Broadbent and D.G. Kendall, The random walk of Trichostrongylus retortaeformis. Biometrics,9 (1953), 460–466

    Article  Google Scholar 

  6. J.S. Clark, Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord. Am. Nat.,152 (1998), 204–224.

    Article  Google Scholar 

  7. S.P. Ellner, A. Sasaki, Y. Haraguchi and H. Matsuda, Speed of invasion in lattice population models: pair-edge approximation. J. Math. Biol.,36 (1998), 469–484.

    MATH  Article  MathSciNet  Google Scholar 

  8. R.A. Fisher, The wave of advance of advantageous genes. Annals of Eugenics. (Lond.),7 (1937), 355–369.

    Google Scholar 

  9. M.I. Freidlin, On wavefront propagation in periodic media. Stochastic Analysis Applications, (ed. M. Pinsky) Advances in Probability and Related Topics,7, M. Dekker, New-York, 1984, 147–166.

    Google Scholar 

  10. M.I. Freidlin, Limit theorems for large deviations and reaction-diffusion equations. Ann. Probab.,13 (1985), 639–675.

    MATH  Article  MathSciNet  Google Scholar 

  11. J. Gartner and M.I. Freidlin, On the propagation of concentration waves in periodic and random media. Soviet Math. Dokl.,20 (1979), 1282–1286.

    Google Scholar 

  12. A. Hastings, Models of spatial spread: Is the theory complete? Ecology,77 (1996), 1675–1679.

    Article  Google Scholar 

  13. A. Hastings, K. Cuddington, K.F. Davies, C.J. Dugaw, S. Elmendorf, A. Freestone, S. Harrison, M. Holland, J. Lambrinos, U. Malvadkar, B.A. Melbourne, K. Moore, C. Taylor and D. Thomson, The spatial spread of invasions: new developments in theory and evidence. Ecology Letters,8 (2005), 91–101.

    Article  Google Scholar 

  14. S.I. Higgins and D.M. Richardson, Predicting plant migration rates in a changing world: The Role of Long-Distance Dispersal. Am. Nat.,153 (1999), 464–475.

    Article  Google Scholar 

  15. S.I. Higgins, D.M. Richardson and R.M. Cowling, Modeling invasive plant spread: The role of plant-environment interactions and model structure. Ecology,7 (1996), 2043–2054.

    Article  Google Scholar 

  16. K. Kawasaki, F. Takasu, H. Caswell and N. Shigesada, How does stochasticity in colonization accelerate speeds of invasion in a cellular automaton model? Ecol. Res.,21 (2006), 334–345.

    Article  Google Scholar 

  17. N. Kinezaki, K. Kawasaki and N. Shigesada, Spatial dynamics of invasion in sinusoidally varying environments. Population Ecology,48 (2006), 263–270.

    Article  Google Scholar 

  18. N. Kinezaki, K. Kawasaki, F. Takasu and N. Shigesada, Modeling biological invasions into periodically fragmented environments. Theor. Popul. Biology,64 (2003), 291–302.

    MATH  Article  Google Scholar 

  19. R.W. Van Kirk and M.A. Lewis, Integrodifference models for persistence in fragmented habitats. Bull. Math. Biology,59 (1997), 107–137.

    MATH  Article  Google Scholar 

  20. M. Kot, M.A. Lewis and F. van den Driessche, Dispersal data and the spread of invading organisms. Ecology,77 (1996), 2027–2042.

    Article  Google Scholar 

  21. M. Kot, J. Medlock, T. Reluga and D.B. Walton, Stochasticity, invasions, and branching random walks. Theor. Popul. Biology,66 (2004), 175–184.

    Article  Google Scholar 

  22. M.A. Lewis and S. Pacala, Modeling and analysis of stochastic invasion processes. J. Math. Biol.,41 (2000), 387–429.

    MATH  Article  MathSciNet  Google Scholar 

  23. M.A. Lewis, M.G. Neubert, H. Caswell, J.S. Clark and K. Shea, A guide to calculating discrete-time invasion rates from data. In Conceptual ecology and invasion biology: Reciprocal approaches to nature (eds. M.W. Cadotte, S.M. McMahon and T. Fukami), Springer, 2006, 169–192.

  24. F. Lutscher, M.A. Lewis and E. McCauley, Effects of heterogeneity on spread and persistence in rivers. Bull. Math. Biology,68 (2006), 2129–2160.

    Article  MathSciNet  Google Scholar 

  25. J.A.J. Metz, D. Mollison and F. van den Bosch, The dynamics of invasion waves. The Geometry of Ecological Interactions: Simplfying Spatial Complexity (eds. O. Dieckmann, R. Law and J.A.J. Metz), Cambridge University Press, 2000, 482–512.

  26. D. Mollison, Spatial contact model for ecological and epidemic spread. J. Rol. Stat. Soc. B,39 (1977), 283–326

    MATH  MathSciNet  Google Scholar 

  27. M.G. Neubert and H. Caswell, Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations. Ecology,81 (2000), 1613–1628.

    Article  Google Scholar 

  28. M.G. Neubert, M. Kot and M.A. Lewis, Invasion speeds in fluctuating environments. Proc. R. Soc. Lond. B,267 (2000), 1603–1610.

    Article  Google Scholar 

  29. A. Okubo, Diffusion and Ecological Problems: Mathematical Models. Springer-Verlag, New York, 1980.

    MATH  Google Scholar 

  30. A. Okubo and S.A. Levin, Diffusion and Ecological Problems: New Perspectives (second edition). Springer-Verlag, New York, 2001.

    Google Scholar 

  31. W.E. Ricker, Stock and recruitment. J. Fisheries Research Board of Canada,11 (1954), 559–623.

    Google Scholar 

  32. T.C. Robbins and M.A. Lewis, Modeling population spread in heterogeneous environments using integrodifference equations. preprint, 2006.

  33. M.W. Shaw, Modeling stochastic processes in plant pathology. Annu. Rev. Phytopathol,32 (1994), 523–544.

    Article  Google Scholar 

  34. N.Shigesada and K. Kawasaki, Biological Invasions; Theory and Practice. Oxford University Press, 1997.

  35. N. Shigesada and K. Kawasaki, Invasion and species range expansion: effects of long-distance dispersal. Dispersal Ecology (eds. J.M. Bullock, R.E. Kenward and R.S. Hails), Blackwell, Oxford, 2002, 350–373.

    Google Scholar 

  36. N. Shigesada, K. Kawasaki and Y. Takeda, Modeling stratified diffusion in biological invasions. Am. Nat.,146 (1995), 229–251.

    Article  Google Scholar 

  37. N. Shigesada, K. Kawasaki and E. Teramoto, Traveling periodic waves in heterogeneous environments. Theor. Popul. Biology,30 (1986), 143–160.

    MATH  Article  MathSciNet  Google Scholar 

  38. J.G. Skellam, Random dispersal in theoretical populations. Biometrika,38 (1951), 196–218.

    MATH  MathSciNet  Google Scholar 

  39. M. Slatkin, Gene flow and selection in a cline. Genetics,75 (1973), 733–756.

    MathSciNet  Google Scholar 

  40. F. Takasu, N. Yamamoto, K. Kawasaki, T. Togashi, Y. Kishi and N. Shigesada, Modeling the expansion of an introduced tree disease. Biological Invasions,2 (2000), 141–150.

    Article  Google Scholar 

  41. R.R. Veit and M.A. Lewis, Dispersal, population growth, and the Allee effect: dynamics of the house finch invasion of eastern North America. Am. Nat.,148 (1996), 255–274.

    Article  Google Scholar 

  42. H.F. Weinberger, Long-time behavior of a class of biological models. SIAM J. Math. Anal.,13 (1982), 353–396.

    MATH  Article  MathSciNet  Google Scholar 

  43. H.F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol.,45 (2002), 511–548.

    MATH  Article  MathSciNet  Google Scholar 

  44. E.J. Williamson, The distribution of larvae of randomly moving insect. Austral. J. Biol. Sci.,14 (1961), 598–604.

    Google Scholar 

  45. E.J. Williamson and S. Harrison, The Biotic and abiotic limits to the spread of exotica revegetation species in oak woodland and serpentine habitats. Ecol. Appl.,12 (2002), 40–51.

    Article  Google Scholar 

  46. K.A. With, The landscape ecology of invasive spread. Cons. Biol.,16 (2002), 1192–1203.

    Article  Google Scholar 

  47. J. Xin, Front propagation in heterogeneous media. SIAM Review,42 (2000), 161–230.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohkichi Kawasaki.

About this article

Cite this article

Kawasaki, K., Shigesada, N. An integrodifference model for biological invasions in a periodically fragmented environment. Japan J. Indust. Appl. Math. 24, 3–15 (2007). https://doi.org/10.1007/BF03167504

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167504

Key words

  • integrodifference model
  • periodically fragmented environment
  • traveling periodic wave
  • biological invasion