Skip to main content
Log in

Boat-sail Voronoi diagram and its computation based on a cone-approximation scheme

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

A new concept called a boat-sail distance is introduced on the surface of water with flow, and it is used to define a generalized Voronoi diagram, in such a way that the water surface is partitioned into regions belonging to the nearest harbors with respect to this distance. The problem of computing this Voronoi diagram is reduced to a boundary value problem of a partial differential equation, and a numerical method for solving this problem is constructed. The method is a modification of a so-called fast marching method originally proposed for the eikonal equation. Computational experiments show the efficiency and the stableness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Aichholzer, F. Aurenhammer, D.Z. Chen and D.T. Lee, Skew Voronoi diagrams. International Journal of Computational Geometry and Applications,9 (1999), 235–247.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. Aronov and J. O’Rourke, Nonoverlap of the star unfolding. Discrete and Computational Geometry,8 (1992), 219–250.

    Article  MATH  MathSciNet  Google Scholar 

  3. B. Aronov, On the geodesic Voronoi diagram of point sites in a simple polygon. Algorithmica,4 (1989), 109–140.

    Article  MATH  MathSciNet  Google Scholar 

  4. P.F. Ash and E.D. Bolker, Generalized Dirichlet tessellations. Geometriae Dedicata,20 (1986), 209–243.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Aurenhammer, Power diagrams — Properties, algorithms and applications. SIAM Journal of Computing,16 (1987), 78–96.

    Article  MATH  MathSciNet  Google Scholar 

  6. F. Aurenhammer, Voronoi diagrams — A survey of a fundamental geometric data structure. ACM Computing Surveys,23 (1991), 345–405.

    Article  Google Scholar 

  7. F. Aurenhammer and H. Edelsbrunner, An optimal algorithm for constructing the weighted Voronoi diagram in the plane. Pattern Recognition,17 (1984), 251–257.

    Article  MATH  MathSciNet  Google Scholar 

  8. L.P. Chew and R. Drysdale, III, Voronoi diagrams based on convex distance functions. Proceedings of the ACM Symposium on Computational Geometry, Baltimore, 1985, 235–244.

  9. S. Fortune, Voronoi diagrams and Delaunay triangulations. Computing in Euclidean Geometry (eds. D.-Z. Du and F.K. Hwang), World Scientific Publishing, Singapore, 1992, 193–233.

    Google Scholar 

  10. H. Imai, M. Iri and K. Murota, Voronoi diagram in the Laguerre geometry and its applications. SIAM Journal of Computing,14 (1985), 93–105.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Klein, Abstract Voronoi diagrams and their applications. Lecture Notes in Computer Science333 (International Workshop on Computational Geometry, Wurzburg, 1988), Springer-Verlag, Berlin, 1988, 148–157.

    Google Scholar 

  12. K. Kobayashi and K. Sugihara, Crystal Voronoi diagram and its applications. Future Generation Computer System,18 (2002), 681–692.

    Article  Google Scholar 

  13. D.-T. Lee, Two-dimensional Voronoi diagrams in the Lp-metric. Journal of the ACM,27 (1980), 604–618.

    Article  MATH  Google Scholar 

  14. R.E. Miles, Random points, sets and tessellations on the surface. The Indian Journal of Statistics, Series A,33 (1971), 145–174.

    MATH  MathSciNet  Google Scholar 

  15. A. Okabe, B. Boots, K. Sugihara and S.N. Chiu, Spatial Tessellations — Concepts and Applications of Voronoi Diagrams (Second Edition). John Wiley and Sons, Chichester, 2000.

    MATH  Google Scholar 

  16. B.F. Schaudt and R.L. Drysdale, Multiplicatively weighted crystal growth Voronoi diagrams. Proceedings of the Seventh Annual ACM Symposium on Computational Geometry, 1991, 214–223.

  17. T.H. Scheike, Anisotropic growth of Voronoi cells. Advances in Applied Probability,26 (1994), 43–53.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.A. Sethian, Fast marching method. SIAM Review,41 (1999), 199–235.

    Article  MATH  MathSciNet  Google Scholar 

  19. J.A. Sethian, Level Set Methods and Fast Marching Methods (Second Edition). Cambridge University Press, Cambridge, 1999.

    MATH  Google Scholar 

  20. K. Sugihara, Voronoi diagrams in a river. International Journal of Computational Geometry and Applications,2 (1992), 29–48.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsushi Nishida.

About this article

Cite this article

Nishida, T., Sugihara, K. Boat-sail Voronoi diagram and its computation based on a cone-approximation scheme. Japan J. Indust. Appl. Math. 22, 367–383 (2005). https://doi.org/10.1007/BF03167490

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167490

Key words

Navigation