Skip to main content
Log in

Stable solutions to the Ginzburg-Landau equation with magnetic effect in a thin domain

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We are dealing with the Ginzburg-Landau equation with magnetic effect in a 3-dimensional thin domain, where the thinness of the domain is controlled by a small positive parameter, epsilon, and the variable thickness is represented by the graph of a smooth function. Consider the case that the platform of the thin domain consists of a family of disjoint subdomains with narrow channels. This gives an example of a weak link, called an S-c-S junction in superconductivity. We prove that if the reduced equation, obtained in the limit as the thinness vanishes, has a nondegenerate stable solution in each subdomain and if the volume of the channels is sufficiently small, then there exists a stable solution to the original equation in the thin domain. Using the same argument, we can also prove the existence of non-trivial stable solutions for the case that the variable surface of a thin domain has deep wells in the scale by epsilon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Baumann, D. Phillips and Q. Tang, Stable nucleation for the Ginzburg-Landau system with an applied magnetic field. Arch. Rational Mech. Anal.,142 (1998), 1–43.

    Article  MathSciNet  Google Scholar 

  2. J. Berger and J. Rubinstein, Bifurcation analysis for phase transitions in superconducting rings with nonuniform thickness. SIAM J. Appl. Math.,58 (1998), 103–121.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bernoff and P. Sternberg, On set of superconductivity in decreasing fields for general domains. J. Math. Phys.,39 (1998), 1272–1284.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Bolley and B. Helffer, Proof of the De Gennes formula for the superheating field in the weak κ limit. Ann. Inst. H. Poincaré Anal. Non Linéaire,14 (1997), 597–613.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Chapman, Q. Du, M. Gunzberger and J. Peterson, Simplified Ginzburg-Landau model for superconductivity valid for high kappa and high fields. Adv. Math. Sci. Appl.,5 (1995), 193–218.

    MathSciNet  MATH  Google Scholar 

  6. S. Chapman, Q. Du and M. Gunzberger, A model for variable thickness superconducting thin films. Z. Angew. Math. Phys.,47 (1996), 410–431.

    Article  MathSciNet  MATH  Google Scholar 

  7. X.-Y. Chen, S. Jimbo and Y. Morita, Stabilization of vortices in the Ginzburg-Landau equation with a variable diffusion coefficient. SIAM J. Math. Anal.,29 (1998), 903–912.

    Article  MathSciNet  MATH  Google Scholar 

  8. N. Dancer, Domain variation for certain sets of solutions and applications. Topol. Methods Nonlinear Anal.,7 (1996), 95–113.

    MathSciNet  MATH  Google Scholar 

  9. M. Del Pino, P. L. Felmer and P. Sternberg, Boundary concentration for the eigenvalue problems related to the onset of superconductivity. Comm. Math. Phys.,210 (2000), 413–446.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order. Grundlehren Math. Wiss., Bd. 224, Berlin-Heidelberg-New York, Springer, 1977 (first ed.), 1983 (second ed.).

    MATH  Google Scholar 

  11. V. Ginzburg and L. Landau, On the theory of superconductivity. Zh. Eksper. Teor. Fiz.,20 (1950), 1064–1082.

    Google Scholar 

  12. E. Hill, J. Rubinstein and P. Sternberg, A modified Ginzburg-Landau model for Josephson junction in a ring. Quart. Appl. Math.,60 (2002), 485–503.

    MathSciNet  MATH  Google Scholar 

  13. S. Jimbo and Y. Morita, Stability of non-constant steady state solutions to a Ginzburg-Landau equation in higher space dimensions. Nonlinear Anal.,22 (1994), 753–770.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Jimbo and Y. Morita, Ginzburg-Landau equation and stable solutions in a rotational domain. SIAM J. Math. Anal.,27 (1996), 1360–1385.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Jimbo and Y. Morita, Stable solutions with zeros to the Ginzburg-Landau equation with Neumann boundary condition. J. Differential Equations,128 (1996), 596–613.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Jimbo and Y. Morita, Stable vortex solutions to the Ginzburg-Landau equation with a variable coefficient in a disk. J. Differential Equations,155 (1999), 153–176.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Jimbo and Y. Morita, Ginzburg-Landau equation with magnetic effect in a thin domain. Calc. Var. Partial Differential Equations,15 (2002), 325–352.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Jimbo, Y. Morita and J. Zhai, Ginzburg-Landau equation and stable steady state solutions in a non-trivial domain. Comm. Partial Differential Equations,20 (1995), 2093–2112.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Jimbo and P. Sternberg, Non-existence of permanent currents in convex planar samples. SIAM J. Math. Anal.,33 (2002), 1379–1392.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Jimbo and J. Zhai, Ginzburg-Landau equation with magnetic effect: non-simply connected domain. J. Math. Soc. Japan,50 (1998), 663–684.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Jimbo and J. Zhai, Domain perturbation method and local minimizers to Ginzburg-Landau functional with magnetic effect. Abstr. Appl. Anal.,5 (2000), 101–112.

    Article  MathSciNet  MATH  Google Scholar 

  22. F.H. Lin, Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds. Comm. Pure and Appl. Math.,51 (1998), 385–441.

    Article  MathSciNet  Google Scholar 

  23. K. Lu and X.-B. Pan, Ginzburg-Landau equation with DeGennes boundary condition. J. Differential Equations,129 (1996), 136–165.

    Article  MathSciNet  MATH  Google Scholar 

  24. K. Lu, and X.-B. Pan, Eigenvalue problems for Ginzburg-Landau operator in bounded domains. J. Math. Phys.,40 (1999), 2647–2670.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Rubinstein and M. Schatzman, Asymptotics for thin superconducting rings. J. Math. Pures Appl.,77 (1998), 801–820.

    MathSciNet  Google Scholar 

  26. J. Rubinstein and P. Sternberg, Homotopy classification of minimizers of the Ginzburg-Landau energy and the existence of permanent currents. Comm. Math. Phys.,179 (1996), 257–263.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Serfaty, Stable configurations in superconductivity: uniqueness, multiplicity, and vortexnucleation. Arch. Rational Mech. Anal.,149 (1999), 329–365.

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Sandier and S. Serfaty, On the energy of type-II superconductors in the mixed phase. Rev. Math. Phys.,12 (2000), 1219–1257.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Tinkham, Introduction to Superconductivity (Second Ed.). McGraw-Hill, 1996.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihisa Morita.

About this article

Cite this article

Morita, Y. Stable solutions to the Ginzburg-Landau equation with magnetic effect in a thin domain. Japan J. Indust. Appl. Math. 21, 129 (2004). https://doi.org/10.1007/BF03167468

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1007/BF03167468

Key words

Navigation