Skip to main content
Log in

A controllability method with an artificial boundary condition for the exterior Helmholtz problem

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

The exterior Helmholtz problem is solved by a controllability method with a new artificial boundary condition for a time-periodic wave equation. The condition uses the Dirichlet-to-Neumann operator associated with the Helmholtz problem. A semi-discrete problem is derived for the time-periodic wave equation, and a necessary and sufficient condition is proved for the uniqueness of the discrete problem. A typical example where the condition is satisfied is shown. Some numerical examples are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. A Wiley-Interscience Publication, John Wiley & Sons, New York, 1972.

    MATH  Google Scholar 

  2. C. Bardos and J. Rauch, Variational algorithms for the Helmholtz equation using time evolution and artificial boundaries. Asymptotic Anal.,9 (1994), 101–117.

    MATH  MathSciNet  Google Scholar 

  3. A. Bayliss, C.I. Goldstein and E. Turkel, An iterative method for the Helmholtz equation. J. Comput. Phys.,49 (1983), 443–457.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Bayliss, M. Gunzburger and E. Turkel, Boundary conditions for the numerical solution of elliptic equations in exterior regions. SIAM J. Appl. Math.,42 (1982), 430–451.

    Article  MATH  MathSciNet  Google Scholar 

  5. M.O. Bristeau, R. Glowinski and J. Périaux, Using exact controllability to solve the Helmholtz equation at high wave numbers. Second International Conference on Mathematical and Numerical Aspects of Wave Propagation (Newark, DE, 1993), SIAM, Philadelphia, PA, 1993, 113–127.

    Google Scholar 

  6. M.O. Bristeau, R. Glowinski and J. Périaux, Controllability methods for the computation of time-periodic solutions; application to scattering. J. Comput. Phys.,147 (1998), 265–292.

    Article  MATH  MathSciNet  Google Scholar 

  7. D.M. Èidus, The principle of limiting absorption. Trans. Amer. Math. Soc.,47 (1965), 157–191.

    Google Scholar 

  8. H.C. Elman and D.P. O’Leary, Efficient iterative solution of the three-dimensional Helmholtz equation. J. Comput. Phys.,142 (1998), 163–181.

    Article  MATH  Google Scholar 

  9. B. Engquist and L. Halpern, Long-time behaviour of absorbing boundary conditions. Math. Methods Appl. Sci.,13 (1990), 189–203.

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves. Math. Comp.,31 (1977), 629–651.

    Article  MATH  MathSciNet  Google Scholar 

  11. K. Feng, Finite element method and natural boundary reduction. Proceedings of the International Congress of Mathematicians, Warsaw, 1983, 1439–1453.

  12. D. Givoli, Exact representations on artificial interfaces and applications in mechanics. Appl. Mech. Rev.,52 (1999), 333–349.

    Article  Google Scholar 

  13. D. Givoli, I. Patlashenko and J.B. Keller, High-order boundary conditions and finite elements for infinite domains. Comput. Methods Appl. Mech. Engrg.,143 (1997), 13–39.

    Article  MATH  MathSciNet  Google Scholar 

  14. G.H. Golub and C.F. Van Loan, Matrix Computations (Third edition). Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996.

    MATH  Google Scholar 

  15. M.J. Grote and J.B. Keller, On nonreflecting boundary conditions. J. Comput. Phys.,122 (1995), 231–243.

    Article  MATH  MathSciNet  Google Scholar 

  16. I. Harari and T. J. R. Hughes, Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains. Comput. Methods Appl. Mech. Engrg.,97 (1992), 103–124.

    Article  MATH  MathSciNet  Google Scholar 

  17. F. Ihlenburg, Finite Element Analysis of Acoustic Scattering. Applied Mathematical Sciences132, Springer-Verlag, New York, 1998.

    Google Scholar 

  18. J.B. Keller and D. Givoli, Exact nonreflecting boundary conditions. J. Comput. Phys.,82 (1989), 172–192.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Ikawa, Partial Differential Equations 2 (in Japanese). Iwanami, Tokyo, 1997.

    Google Scholar 

  20. D. Koyama, Study on the wave equation with an artificial boundary condition. Report CS, No. 00-01, Dept. Comput. Sci., Univ. Electro-Communications, 2000.

  21. M. Magolu monga Made, Incomplete factorization-based preconditionings for solving the Helmholtz equation. Int. J. Numer. Meth. Engng.,50 (2001), 1077–1101.

    Article  MATH  Google Scholar 

  22. M. Masmoudi, Numerical solution for exterior problems. Numer. Math.,51 (1987), 87–101.

    Article  MATH  MathSciNet  Google Scholar 

  23. R.S. Phillips, On the exterior problem for the reduced wave equation. Partial Differential Equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), Amer. Math. Soc., Providence, R.I., 1973, 153–160.

    Google Scholar 

  24. Y. Saad and M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput.,7 (1986), 856–869.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Sanchez Hubert and E. Sanchez Palencia, Vibration and Coupling of Continuous Systems. Asymptotic methods. Springer-Verlag, Berlin-New York, 1989.

    Google Scholar 

  26. G.N. Watson, A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge, 1922.

    MATH  Google Scholar 

  27. M. Zlámal, Curved elements in the finite element method. I. SIAM J. Numer. Anal.,10 (1973), 229–240.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Koyama.

About this article

Cite this article

Koyama, D. A controllability method with an artificial boundary condition for the exterior Helmholtz problem. Japan J. Indust. Appl. Math. 20, 117 (2003). https://doi.org/10.1007/BF03167466

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1007/BF03167466

Key words

Navigation