Skip to main content
Log in

Abstract

We consider the discrete Voronoi diagram in the three-dimensional space, that is, the Voronoi tessellation of a 3-D binary image. The input to the tessellation algorithm is a 3-D image containing a set of pixels of value 0 (generators). The goal is to classify the rest of the pixels to the nearest generator. This paper gives a simple algorithm for computing the Voronoi tessellation map of a 3-D binary image. It runs in O(N3) time for anN ×N ×N input image. A hardware algorithm is also presented, which computes the 3-D Voronoi tessellation map in O(N2) time on an O(N3)-cell array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Borgefors, Distance transformations in digital images. Comput. Vision, Graphics, Image Proc,34 (1986), 344–371.

    Article  Google Scholar 

  2. H. Breu, J. Gil, D. Kirkpatrick and M. Werman, Linear time Euclidean distance transform algorithms. IEEE Trans. on PAMI,17, No. 5 (1995), 529–533.

    Google Scholar 

  3. L. Chen and H.Y.H. Chuang, A fast algorithm for Euclidean distance maps of a 2-D binary image. Information Processing Letters,51 (1994), 25–29.

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Chen and H.Y.H. Chuang, An efficient algorithm for complete Euclidean distance transform on mesh-connected SIMD. Parallel Comput.,21, No. 5 (1995), 841–852.

    Article  MATH  Google Scholar 

  5. P.E. Danielsson, Euclidean distance mapping. Comput. Graphics and Image Proa,14 (1980), 227–248.

    Article  Google Scholar 

  6. A. Fujiwara and T. Masuzawa, An optimal parallel algorithm for the Euclidean distance maps of 2-D binary images. Information Processing Letters,54 (1995), 295–300.

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Hirata, A unified linear-time algorithm for computing distance maps. Information Processing Letters,58 (1996), 129–133.

    Article  MATH  MathSciNet  Google Scholar 

  8. M.N. Kolountzakis and K.N. Kutulakos, Fast computation of Euclidean distance maps for binary images. Information Processing Letters,43 (1992), 181–184.

    Article  MATH  MathSciNet  Google Scholar 

  9. Y. Lee and S. Horng and T. Kao and Y. Chen, Parallel computation of the Euclidean distance transform on the mesh of trees and the hypercube computer. CVGIP: Image Understanding,68 (1997), 109–119.

    Google Scholar 

  10. F. Leymarie and M.D. Levine, Fast raster scan distance propagation on the discrete rectangular lattice. CVGIP: Image Understanding,55 (1992), 84–94.

    Article  MATH  Google Scholar 

  11. M. Miyazawa, P.F. Zeng, N. Iso and T. Hirata, A systolic algorithm for Euclidean distance transform. Technical Report of IPSJ, AL-87-8, 2002, 43–49, (in Japanese).

  12. D.W. Paglieroni, A unified distance transformation algorithm and architecture. Machine Vision Appl.,5 (1992), 47–55.

    Article  Google Scholar 

  13. I. Pitas, Performance analysis of morphological Voronoi tessellation algorithms. Advances in Digital and Computational Geometry (eds. R. Klette, A. Rosenfeld and F. Sloboda), Springer, 1998, 227–254.

  14. H. Yamada, Complete Euclidean distance transformation by parallel operation. Proc. of 7th Int. Conf. on Pattern Recognition, 1984, 69–71.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomio Hirata.

About this article

Cite this article

Hirata, T. 3-D Voronoi tessellation algorithms. Japan J. Indust. Appl. Math. 22, 223–231 (2005). https://doi.org/10.1007/BF03167439

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167439

Key words

Navigation