Skip to main content
Log in

On the structure of steady solutions for the kinematic model of spiral waves in excitable media

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Spiral waves are commonly observed in biological and chemical systems. Representing each wave front by a single curve, Brazhnik, Davydov, and Mikhailov introduce a kinematic model equation. The aim of this paper is to provide a detailed analysis for the steady state solutions of these equations. The existence of asymptotically Archimedean solutions is analytically shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.R. Aliev, T. Amemiya and T. Yamaguchi, Bifurcation of vortecies in the light-sensitive oscillatory Belousov-Zhabotinsky medium. Chem. Phys. Lett.,257 (1996), 552–556.

    Article  Google Scholar 

  2. R.R. Aliev, V.A. Davydov, T. Ohmori, M. Nakaiwa and T. Yamaguchi, Change of the shape of a chemical vortex due to a local disturbance. J. Phys. Chem., A101 (1997), 1313–1316.

    Article  Google Scholar 

  3. R.R. Aliev, V.A. Davydov and T. Yamaguchi, Long range interaction of vortices in a chemical active media. Thermochim. Acta, in press.

  4. A. Belmonte and J.-M. Flesselles, Experimental determination of the dispersion relation for spiral waves. Phys. Rev. Lett.,77 (1996), 1174–1177.

    Article  Google Scholar 

  5. P.K. Brazhnik, Exact solutions for the kinematic model of autowaves in two-dimensional excitable media. Physica, D94 (1996), 205–220.

    Article  MATH  Google Scholar 

  6. P.K. Brazhnik, V.A. Davydov and A.S. Mikhailov, Kinematical theory of spiral waves in excitable media: comparison with numerical computations. Physica, D52 (1991), 379–397.

    Article  Google Scholar 

  7. V.A. Davidov, R.R. Aliev, M. Yoshimoto and T. Yamaguchi, Strong interaction between spirals in nonuniform excitable media. Submitted to Phys. Rev. E.

  8. V.A. Davydov, V.S. Zykov and A.S. Mikhailov, Kinematics of autowaves structure in excitable media (English translation). Sov. Phys. Usp.,34 (1991), 665–684.

    Article  Google Scholar 

  9. P.C. Fife, Dynamics of internal layers and diffusive interfaces. CBMS-NSF Regional Conf. Series in Appl. Math., 53, 1988.

  10. P.C. Fife, Propagator-controller systems and chemical patterns. Non-Equilibrium Dynamics in Chemical Systems (eds. C. Vidal and A. Pacault), Springer-Verlag, Berlin, 1984, 76–88.

    Google Scholar 

  11. P.C. Fife, Understanding the patterns in the BZ reagent. J. Stat. Phys.,39 (1985), 687–703.

    Article  MathSciNet  Google Scholar 

  12. J. Gomatam and D.A. Hodson, The eikonal equation: stability of reaction-diffusion waves on a sphere. Physica, D49 (1991), 82–89.

    Article  Google Scholar 

  13. N. Ishimura, Shape of spirals, Tohoku Math. J.,50 (1998), to appear.

  14. W. Jahnke and A.T. Winfree, A survey of spiral-wave behaviors in the Oregonator model. Int. J. Bifurcation and Chaos,1 (1991), 445–466.

    Article  MATH  MathSciNet  Google Scholar 

  15. J.P. Keener, A geometrical theory for spiral waves in excitable media. SIAM J. Appl. Math.,46 (1986), 1039–1056.

    Article  MATH  MathSciNet  Google Scholar 

  16. J.P. Keener and J.J. Tyson, Spiral waves in the Belousov-Zhabotinskii reaction. Physica, D21 (1986), 307–324.

    Article  MATH  MathSciNet  Google Scholar 

  17. E. Meron, The role of curvature and wavefront interactions in spiral-wave dynamics. Physica, D49 (1991), 98–106.

    Article  MathSciNet  Google Scholar 

  18. K.B. Migler and R.B. Meyer, Spirals in liquid crystals in a rotating magnetic field. Physica, D71 (1994), 412–420.

    Article  MATH  Google Scholar 

  19. H. Miike, Y. Mori and T. Yamaguchi, Hiheikoukei no Kagaku III (Non-Equilibrium Sciences III). Kodansya, Tokyo, 1997 (in Japanese).

    Google Scholar 

  20. A.S. Mikhailov, V.A. Davydov and A.S. Zykov, Complex dynamics of spiral waves and motion of curves. Physica, D70 (1994), 1–39.

    Article  MATH  MathSciNet  Google Scholar 

  21. A.S. Mikhailov and V.I. Krinsky, Rotating spiral waves in excitable media: the analytical results. Physica, D9 (1983), 346–371.

    Article  MathSciNet  Google Scholar 

  22. A.S. Mikhailov and V.S. Zykov, Kinematical theory of spiral waves in excitable media: comparison with numerical computations. Physica, D52 (1991), 379–397.

    Article  Google Scholar 

  23. A.J. Mulholland and J. Gomatam, The eikonal approximation to excitable reaction-diffusion systems: traveling non-planar wave fronts on the plane. Physica, D89 (1996), 329–345.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Nishio, The master thesis. The University of Tsukuba, 1994.

  25. J.J. Tyson and J.P. Keener, Singular perturbation theory of traveling waves in excitable media. Physica, D32 (1988), 327–361.

    Article  MATH  MathSciNet  Google Scholar 

  26. V.S. Zykov and S.C. Müller, Spiral waves on circular and spherical domains of excitable medium. Physica, D97 (1996), 322–332.

    Article  Google Scholar 

  27. H. Yamada and K. Nozaki, Dynamics of wave fronts in excitable media. Physica, D64 (1993), 153–162.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Seiji Ukai on his sixtieth birthday.

About this article

Cite this article

Ikota, R., Ishimura, N. & Yamaguchi, T. On the structure of steady solutions for the kinematic model of spiral waves in excitable media. Japan J. Indust. Appl. Math. 15, 317 (1998). https://doi.org/10.1007/BF03167407

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF03167407

Key words

Navigation