Skip to main content
Log in

Finite-band solutions of the Dirac soliton equation through a reduction technique

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

A nonlinearization technique is used to split the 1+1 dimensional soliton equation into two compatible Hamiltonian systems of ordinary differential equations in the finitedimensional invariant set of the flow. The Dirac soliton hierarchy, with the defocusing nonlinear Schrödinger equation as one of its member, is investigated in detail to illustrate the technique. A numerical example is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.W. Cao and X.G. Geng, Classical integrable systems generated through nonlinearization of eigenvalue problems. Proc. Conf. on Nonlinear Physics (Shanghai, 1989), Research Reports in Physics, Springer Verlag, 1989, 66–78.

  2. C.W. Cao, Nonlinearization of the Lax system for AKNS hierarchy. Science in China, A,33 (1990), 528–536.

    MATH  Google Scholar 

  3. C.W. Cao, A classical integrable system and the involutive representation of solutions of the KdV equation. Acta Math. Sinica,7 (1991), 216–223.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Antonowicz and S. Rauch-Wojciechowski, Constrained flows of integrable PDEs and bi-Hamiltonian structure of the Garnier system. Phys. Lett., A,147 (1990), 455–462.

    Article  MathSciNet  Google Scholar 

  5. M. Antonowicz and S. Rauch-Wojciechowski, Restricted flows of soliton hierarchies: coupled KdV and Harry Dym case. J. Phys., A: Math. Gen.,24 (1991), 5043–5061.

    Article  MATH  MathSciNet  Google Scholar 

  6. T. Pan and M. Qian, Inverse spectral problem for finite-band Dirac operator and conditionally periodic solution of defocusing NLS equation. Science in China, A,33 (1990), 1034–1046.

    MATH  MathSciNet  Google Scholar 

  7. D. B. Hinton, A. K. Jordan, W. K. Klans and J. K. Shaw, Inverse scattering on the line for a Dirac system. J. Math. Phys.,32 (1991), 3015–3030.

    Article  MathSciNet  Google Scholar 

  8. A. K. Jordan and S. Lakshmanasamy, Inverse scattering theory applied to the design of single-mode planar optical waveguide. J. Opt. Soc. Amer.,A6 (1989), 1206–1212.

    Article  Google Scholar 

  9. G. P. Bava, G. Ghione and I. Maio, Fast exact inversion of the generalized Zakharov-Shabat problem for rational scattering data: Application to the synthesis of optical couples. SIAm J. Appl. Math.,49 (1988), 689–702.

    Article  MathSciNet  Google Scholar 

  10. H. Grosse and G. Opelt, Fractional charges in external field problems and the inverse scattering method. Nuclear Phys.,B285 (1987), 143–161.

    Article  MathSciNet  Google Scholar 

  11. C.W. Cao, Parametric representation of the finite-band solution of the Heisenberg equation. Phys. Lett., A,184 (1994), 333–338.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Moser, Various aspects of integrable Hamiltonian systems. Dynamical Systems (CIBE 1987), Progress in Math.,8 (1980), 223.

    Google Scholar 

  13. J. Moser, Geometry of quadrics and spectral theory. The Chern Symposium 1979, Springer Verlag, 1981, 147–188.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Wu, YT., Mitsui, T. Finite-band solutions of the Dirac soliton equation through a reduction technique. Japan J. Indust. Appl. Math. 13, 333–342 (1996). https://doi.org/10.1007/BF03167251

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167251

Key words

Navigation