Skip to main content
Log in

Dynamics on the global attractor of a gradient flow arising from the Ginzburg-Landau equation

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

The dynamics on the attractor for the complex Ginzburg-Landau equationu t =v(1+)u xx +u-(1+)|u| 2 u for parameter values μ≈κ is described via a semiconjugacy onto a simple ordinary differential equation difined on the unit disk inR 2K

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Bernoff, Slowly varying fully nonlinear wavetrains in the Ginzburg-Landau equation. Physica, D30 (1988), 363–381.

    Article  MATH  MathSciNet  Google Scholar 

  2. K.J. Brown, P.C. Dunne and R.A. Gardner, A semilinear parabolic system arising in the theory of superconductivity. J. Differential Equations,40 (1981), 232–252.

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Chafee and E.F. Infante, A bifurcation problem for a nonlinear partial differential equations of parabolic type. Appl. Anal.,4 (1974), 17–37.

    Article  MATH  MathSciNet  Google Scholar 

  4. S.N. Chow and J.K. Hale, Methods of Bifurcation Theory. Springer-Verlag, New York, 1982.

    MATH  Google Scholar 

  5. S.N. Chow and K. Lu, Invariant manifolds, for flows in Banach spaces. J. Differential Equations,74 (1988), 285–317.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. conley, Isolated Invariant Sets and the Morse, Index. CBMS Lecture Notes38, A.M.S., Providence, R.I., 1978.

    MATH  Google Scholar 

  7. R.C. Diprima, W. Eckhaus and L.A. Segel, Non-linear wave-number interaction in nearcritical two-dimensional flows. J. Fluid Mech.,49 (1971), 705–744.

    Article  MATH  Google Scholar 

  8. C.R. Doering, J.G. Gibbon, D.D. Holm and B. Nicolaenko, Low-dimensional behavior in the complex Ginzburg-Landau equation. Nonlinearity,1 (1988), 279–309.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Franzosa, The connection matrix theory for Morse decompositions. Trans. Amer. Math. Soc.,311 (1989), 561–592.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Franzosa, The continuation theory for Morse decompositions and connection matrices. Trans. Amer. Math. Soc.,311 (1989), 561–592.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.M. Ghidaglia and B. Heron, Dimension of the attractors associated to the Ginzburg-Landau partial differential equation. Physica, D28 (1987), 282–304.

    Article  MATH  MathSciNet  Google Scholar 

  12. J.K. Hale, Asymptotic Behaviour of Dissipative Systems. Math. Surveys Monographs25, A.M.S., 1988.

  13. H. Hattori and K. Mischaikow, A dynamical system approach to a phase transition problem. J. Differential Equations,94 (1991), 340–378.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Henry, Geometric Theory of Semilinear Parabolic Equations. Springer-Verlag, New York, 1981.

    MATH  Google Scholar 

  15. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence. Springer-Verlag, New York, 1981.

    Google Scholar 

  16. C. McCord and K. Mischaikow, On the global dynamics of attractors for scalar delay equations. Preprint CDSNS92-89.

  17. R. Moeckel, Morse decompositions and connection matrices. Ergodic Theory Dynamical Systems,8* (1988), 227–250.

    Article  MathSciNet  Google Scholar 

  18. H.T. Moon, P. Huerre and L.G. Redekopp, Three-frequency motion and chaos in the Ginzburg-Landau equation. Phys. Rev. Lett.,49 (1982), 458–460.

    Article  MathSciNet  Google Scholar 

  19. H.T. Moon, P. Huerre and L.G. Redekopp, Transitions to chaos in the Ginzburg-Landau equation. Physica,7D (1983), 135–150.

    MathSciNet  Google Scholar 

  20. A.C. Newell and J.A. Whitehead, Finite bandwidth, finite amplitude convection. J. Fluid Mech.,38 (1969), 279–303.

    Article  MATH  Google Scholar 

  21. D. Salamon, Connected simple systems and the Conley index of isolated invariant sets. Trans. Amer. Math. Soc.,291 (1985), 1–41.

    Article  MATH  MathSciNet  Google Scholar 

  22. J.T. Stuart, On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. J. Fluid Mech.,9 (1960), 353–370.

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer Verlag, New York, 1988.

    MATH  Google Scholar 

  24. A. Vanderbauwhede and S.A. Van Gils, Center Manifolds and Contractions on a Scale of Banach Spaces. J. Funct. Anal.,72 (1987), 209–224.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research was supported in part by NSF Grant DMS-9101412.

Research was supported in part by Human-Science-Religion Research-aid Fund 1991.

About this article

Cite this article

Mischaikow, K., Morita, Y. Dynamics on the global attractor of a gradient flow arising from the Ginzburg-Landau equation. Japan J. Indust. Appl. Math. 11, 185–202 (1994). https://doi.org/10.1007/BF03167221

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167221

Key words

Navigation