Skip to main content
Log in

Existence and stability of stationary solutions to the discrete Boltzmann equation

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

The initial-boundary value problems and the corresponding stationary problems of the discrete Boltzmann equation are studied. It is shown that stationary solutions exist for any boundary data. These stationary solutions are unique in a neighborhood of a given constant Maxwellian. Furthermore, it is proved that if both initial and boundary data are close to a given constant Maxwellian, then unique solutions to the initial-boundary value problems exist globally in time and converge to the corresponding unique stationary solutions exponentially as time goes to infinity. The stability condition plays an essential role in proving the uniqueness and the time-asymptotic stability results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.T. Beale, Large-time behavior of the Broadwell model of a discrete velocity gas. Comm. Math. Phys.,102 (1985), 217–235.

    Article  MATH  MathSciNet  Google Scholar 

  2. J.T. Beale, Large-time behavior of discrete velocity Boltzmann equations. Comm. Math. Phys.,106 (1986), 659–678.

    Article  MATH  MathSciNet  Google Scholar 

  3. J.M. Bony, Solutions globales bornées pour les modèles discrets de l’équation de Boltzmann, en dimension 1 d’espace. Journées “Equations aux Dérivées Partielles”, Ecole Polytechnique, 1987.

  4. J.E. Broadwell, Shock structure in a simple discrete velocity gas. Phys. Fluids,7 (1964), 1243–1247.

    Article  MATH  Google Scholar 

  5. H. Cabannes, Étude de la propagation des ondes dans un gaz à 14 vitesses. J. Mécan.,14 (1975), 705–744.

    MATH  Google Scholar 

  6. H. Cabannes, Comportement asymptotique des solutions de l’équation de Boltzmann discrète. C. R. Acad. Sci. Paris,302 (1986), 249–253.

    MATH  MathSciNet  Google Scholar 

  7. H. Cabannes and S. Kawashima, Le proplème aux valeurs initiales en théorie cinétique discrète. C. R. Acad. Sci. Paris,307 (1988), 507–511.

    MATH  MathSciNet  Google Scholar 

  8. R.E. Caflisch and T.-P. Liu, Stability of shock waves for the Broadwell equations. Comm. Math. Phys.,114 (1988), 103–130.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Cercignani, Sur des critères d’existence globale en théorie cinétique discrète. C. R. Acad. Sci. Paris,301 (1985), 89–92.

    MATH  MathSciNet  Google Scholar 

  10. C. Cercignani, R. Illner, M. Pulvirenti and M. Shinbrot, On nonlinear stationary half-space problems in discrete kinetic theory. J. Statist. Phys.,54 (1988), 885–896.

    Article  MathSciNet  Google Scholar 

  11. C. Cercignani, R. Illner and M. Shinbrot, A boundary value problem for discrete-velocity models. Duke Math. J.,55 (1987), 889–900.

    Article  MATH  MathSciNet  Google Scholar 

  12. K.O. Friedrichs, Symmetric positive linear differential equations. Comm. Pure Appl. Math.,11 (1958), 333–418.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Gatignol, Théorie Cinétique de Gaz à Répartition Discrète de Vitesses. Lecture Notes in Phys. 36, Springer-Verlag, New York, 1975.

    Google Scholar 

  14. R. Gatignol, Kinetic theory boundary conditions for discrete velocity gases. Phys. Fluids,20 (1977), 2022–2030.

    Article  MATH  Google Scholar 

  15. S. Kawashima, Global existence and stability of solutions for discrete velocity models of the Boltzmann equation. Recent Topics in Nonlinear PDE, Lecture Notes in Numer. Appl. Anal. 6, Kinokuniya, Tokyo, 1983, pp. 59–85.

    Google Scholar 

  16. S. Kawashima, Large-time behavior of solutions of the discrete Boltzmann equation. Comm. Math. Phys.,109 (1987), 563–589.

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Kawashima, Initial-boundary value problem for the discrete Boltzmann equation. Journées “Equations aux Dérivées Partielles”, Ecole Polytechnique, 1988.

  18. S. Kawashima, Global solutions to the initial-boundary value problems for the discrete Boltzmann equation. To appear in Nonlinear Analysis.

  19. S. Kawashima, Global existence and asymptotic behavior of solutions to the mixed problems for the discrete Boltzmann equation. To appear in Proceedings of the Symposium on Nonlinear PDEs and Applications at Katata.

  20. S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Comm. Math. Phys.,101 (1985), 97–127.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Kawashima, T. Yanagisawa and Y. Shizuta, Mixed problems for quasi-linear symmetric hyperbolic systems. Proc. Japan Acad.,63 (1987), 243–246.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Matsumura, Asymptotics toward rarefaction wave for solutions of the Broadwell model of a discrete velocity gas. Japan J. Appl. Math.,4 (1987), 489–502.

    Article  MATH  MathSciNet  Google Scholar 

  23. T. Nishida and M. Mimura, On the Broadwell’s model for a simple discrete velocity gas. Proc. Japan Acad.,50 (1974), 812–817.

    Article  MATH  MathSciNet  Google Scholar 

  24. J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity. Trans. Amer. Math. Soc.,291 (1985), 167–187.

    Article  MATH  MathSciNet  Google Scholar 

  25. Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J.,14 (1985), 249–275.

    MATH  MathSciNet  Google Scholar 

  26. D.R. Smart, Fixed Point Theorems. Cambridge Univ. Press, New York, 1974.

    MATH  Google Scholar 

  27. L. Tartar, Existence globale pour un système hyperbolic semi-linéaire de la théorie cinétique des gaz. Séminaire Goulauic-Schwartz, Ecole Polytechnique, 1975.

  28. L. Tartar, Some existence theorems for semilinear hyperbolic systems in one space variable. MRC Technical Summary Report, Univ. of Wisconsin, 1980.

  29. G. Toscani, On the Cauchy problem for the discrete Boltzmann equation with initial values inL +1 (R). Comm. Math. Phys.,121 (1989), 121–142.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kawashima, S. Existence and stability of stationary solutions to the discrete Boltzmann equation. Japan J. Indust. Appl. Math. 8, 389–429 (1991). https://doi.org/10.1007/BF03167144

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167144

Key words

Navigation