Skip to main content
Log in

Numerical analysis of quasiperiodic solutions to nonlinear differential equations

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

Abstract

The paper first generalizes the definition of exponential dichotomy and gives another simple proof of Urabe’s Existence Theorem to nonlinear quasiperiodic differential equations. Next, a useful numerical analysis of quasiperiodic solutions to second order differential equations is presented. The paper extends the results given in previous papers [3], [9], [16] which dealt with weakly nonlinear differential equations. A few examples of numerical analysis of Van der Pol type equations are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bouc, Sur la methode de Galerkin-Urabe pour les systèmes différentieles périodiques. Intern. J. Non-Linear Mech.,7 (1972), 175–188.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. M. Fink, Almost periodic differential equations. Lecture Notes in Math., 377, Springer-Verlag, 1974.

  3. T. Mitsui, Investigation of numerical solutions of some nonlinear quasiperiodic differential equations. Publ. RIMS, Kyoto Univ.,13 (1977), 793–820.

    Article  MathSciNet  Google Scholar 

  4. F. Nakajima, Existence of quasi-periodic solutions of quasiperiodic systems. Funkcial. Ekvac.,15 (1972), 61–73.

    MATH  MathSciNet  Google Scholar 

  5. Y. Shinohara, A geometric method of numerical solution of nonlinear equations and its application to nonlinear oscillations. Publ. RIMS Kyoto Univ.,8 (1972), 13–42.

    Article  MathSciNet  Google Scholar 

  6. Y. Shinohara, Numerical analysis of periodic solutions and their periods to autonomous differential systems. J. Math. Tokushima Univ.,11 (1977), 11–32.

    MATH  MathSciNet  Google Scholar 

  7. Y. Shinohara, Galerkin method for autonomous differential equations. J. Math. Tokushima Univ.,15 (1981), 53–85.

    MATH  MathSciNet  Google Scholar 

  8. Y. Shinohara and N. Yamamoto, Galerkin approximation of periodic solution and its period to Van der Pol equation. J. Math. Tokushima Univ.,12 (1978), 19–42.

    MATH  MathSciNet  Google Scholar 

  9. Y. Shinohara, A. Kohda and T. Mitsui, On quasiperiodic solutions to Van der Pol equation. J. Math. Tokushima Univ.,18 (1984), 1–9.

    MATH  MathSciNet  Google Scholar 

  10. M. Urabe, Galerkin’s procedure for nonlinear periodic systems. Arch. Rational Mech. Anal.,20 (1965), 120–152.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Urabe, Numerical investigation of subharmonic solutions to Duffing’s equation. Trudy Pjator Mezdunarodnoi Konferencii po Nelineinyn Kolebanijam, Inst. Mat. Akad. Nauk USSR., Kiev, Tom 4, 1970, 21–67.

    MathSciNet  Google Scholar 

  12. M. Urabe, Green functions of pseudoperiodic differential operators. Japan-US Seminar on Ordinary Differential and Functional Equations, Lecture Notes in Math., 243, Springer-Verlag, 1971.

  13. M. Urabe, Existence theorems of quasiperiodic solutions to nonlinear differential systems. Funkcial. Ekvac.,15 (1972), 75–100.

    MATH  MathSciNet  Google Scholar 

  14. M. Urabe, On the existence of quasiperiodic solutions to nonlinear quasiperiodic differential equations. Proc. 6th ICNO, Polish Akad. Sci., Warsaw, 1972, Poznan, 1–38.

  15. M. Urabe, On a modified Galerkin’s procedure for nonlinear quasiperiodic differential systems. Équations Différentielles et Fonctionnelles Non Linéares, Actes de la Conférence Internationale „Equa-Diff 73”, Hermann, Paris, 1973, 223–258.

    Google Scholar 

  16. M. Urabe, On the existence of quasiperiodic solutions to nonlinear quasiperiodic differential equations. Nonlinear Vibration Problems, Zagadnienia Drgan Nieliniowych, Warsaw, 1974, 85–93.

  17. M. Urabe and A. Reiter, Numerical computation of nonlinear forced oscillations by Galerkin’s procedure. J. Math. Anal. Appl.,14 (1966), 107–140.

    Article  MathSciNet  Google Scholar 

  18. N. Yamamoto, An error analysis of Galerkin approximations of periodic solution and its period to autonomous differential system. J. Math. Tokushima Univ.,13 (1979), 53–77.

    MATH  MathSciNet  Google Scholar 

  19. N. Yamamoto, Galerkin method for autonomous differential equations with unknown parameters. J. Math. Tokushima Univ.,16 (1982), 55–93.

    MATH  MathSciNet  Google Scholar 

  20. N. Yamamoto, A remark to Galerkin method for nonlinear periodic systems with unknown parameters. J. Math. Tokushima Univ.,16 (1982), 95–126.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Shinohara, Y., Kurihara, M. & Kohda, A. Numerical analysis of quasiperiodic solutions to nonlinear differential equations. Japan J. Appl. Math. 3, 315–330 (1986). https://doi.org/10.1007/BF03167105

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167105

Key words

Navigation