Skip to main content
Log in

Use of the concept of physical dimensions in the structural approach to systems analysis

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

Abstract

The principle of dimensional homogeneity, which asserts that any system of equations describing a physical phenomenon should be consistent with respect to physical dimensions, is shown to imply a kind of total unimodularity of the physically-dimensioned coefficient matrix of the (linearized) system. This fact can be utilized in the structural approach to systems analysis in a number of ways; for example, it is useful in formulating some problems concerning dynamical systems in matroid-theoretic terms as well as in reducing the computational complexity needed to solve them by combinatorial algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Aoki, S. Hosoe and Y. Hayakawa, Structural controllability for linear systems in descriptor form (in Japanese). Trans. Soc. Instr. Control Engineers19 (1983), 628–635.

    Google Scholar 

  2. O. Aono, Dimensions and Dimensional Analysis (Jigen to Jigen-Kaiseki, in Japanese). Kyoritsu, Tokyo, 1982.

    Google Scholar 

  3. J. Edmonds, Minimum partition of a matroid into independent subsets. J. Nat. Bur. Stand.69B (1965), 67–72.

    MathSciNet  Google Scholar 

  4. S. Fujishige, An algorithm for finding an optimal independent linkage. J. Oper. Res. Soc. Japan20 (1977), 59–75.

    MATH  MathSciNet  Google Scholar 

  5. F. R. Gantmacher, The Theory of Matrices. Chelsea, New York, 1959.

    MATH  Google Scholar 

  6. Y. Hayakawa, S. Hosoe and M. Ito, Dynamical degree and controllability for linear systems with intermediate standard form (in Japanese). Trans. Inst. Electr. Comm. Engin. JapanJ64-A (1981), 752–759.

    Google Scholar 

  7. H. E. Huntley, Dimensional Analysis. Macdonald & Co., London, 1952.

    MATH  Google Scholar 

  8. M. Iri, A practical algorithm for the Menger-type generalization of the independent assignment problem. Math. Prog. Study8 (1978), 88–105.

    MathSciNet  Google Scholar 

  9. M. Iri, A review of recent work in Japan on principal partitions of matroids and their applications. Ann. New York Acad. Sci.319 (1979), 306–319.

    Article  MathSciNet  Google Scholar 

  10. M. Iri, Applications of matroid theory. Mathematical Programming—The State of the Art (eds. A. Bachem, M. Grötschel and B. Korte), Springer, Berlin, 1983, 158–201.

    Google Scholar 

  11. M. Iri and S. Fujishige, Use of matroid theory in operations research, circuits and systems theory. Internat. J. Systems Sci.12 (1981), 27–54.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Iri and N. Tomizawa, A unifying approach to fundamental problems in network theory by means of matroids. Electron. Comm. Japan58-A (1975), 28–35.

    MathSciNet  Google Scholar 

  13. F. J. de Jong, Dimensional Analysis for Economists. Contributions to Economic Analysis 50, North-Holland, Amsterdam, 1967.

    MATH  Google Scholar 

  14. S. Kodama and M. Ikeda, On representations of linear dynamical systems (in Japanese). Trans. Inst. Electron. Comm. Engin. JapanJ56-D (1973), 553–560.

    Google Scholar 

  15. H. L. Langhaar, Dimensional Analysis and Theory of Models. John Wiley and Sons, New York, 1951.

    MATH  Google Scholar 

  16. E. L. Lawler, Combinatorial Optimization: Networks and Matroids. Holt, Rinehalt and Winston, New York, 1976.

    MATH  Google Scholar 

  17. C.-T. Lin, Structural controllability. IEEE Trans. Automat. Control, AC-19 (1974), 201–208.

    Article  MATH  Google Scholar 

  18. D. G. Luenberger, Dynamic equations in descriptor form. IEEE Trans. Automat. Control, AC-22 (1977), 312–321.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. G. Luenberger, Time-invariant descriptor systems. Automatica14 (1978), 473–480.

    Article  MATH  Google Scholar 

  20. T. Matsumoto and M. Ikeda, Structural controllability based on intermediate standard forms (in Japanese). Trans. Soc. Instr. Control Engineers,19 (1983), 601–606.

    Google Scholar 

  21. K. Murota, Structural Solvability and Controllability of Systems. Doctor’s dissertation, Univ. Tokyo, 1983.

  22. K. Murota, Structural controllability of a system with some fixed coefficients (in Japanese). Trans. Soc. Instr. Control Engineers19 (1983), 683–690.

    Google Scholar 

  23. K. Murota, Structural controllability of a system in descriptor form expressed in terms of bipartite graphs (in Japanese). Trans. Soc. Instr. Control Engineers20 (1984), 272–274.

    Google Scholar 

  24. K. Murota, Refined formulation of structural controllability of descriptor systems by means of matroids. Discussion Paper Series 258, Inst. Socio-Econom. Planning, Univ. Tsukuba, 1985.

  25. K. Murota and M. Iri, Structural solvability of systems of equations—A mathematical formulation for distinguishing accurate and inaccurate numbers in structural analysis of systems. Japan J. Appl. Math.2 (1985), 247–271.

    Article  MATH  MathSciNet  Google Scholar 

  26. O. Ore, Graphs and matching theorems. Duke Math. J.22 (1955), 625–639.

    Article  MATH  MathSciNet  Google Scholar 

  27. B. Petersen, Investigating solvability and complexity of linear active networks by means of matroids. IEEE Trans. Circuits and Systems, CAS-26 (1979), 330–342.

    Article  MATH  Google Scholar 

  28. A. Recski, Unique solvability and order of complexity of linear networks containing memorylessn-ports. Internat. J. Circuit Theory Appl.7 (1979), 31–42.

    Article  MATH  Google Scholar 

  29. A. Recski, Sufficient conditions for the unique solvability of linear memoryless 2-ports. Internat. J. Circuit Theory Appl.8 (1980), 95–103.

    Article  MATH  MathSciNet  Google Scholar 

  30. A. Recski and M. Iri, Network theory and transversal matroids. Discrete Appl. Math.2 (1980), 311–326.

    Article  MATH  MathSciNet  Google Scholar 

  31. R. W. Shields and J. B. Pearson, Structural controllability of multiinput linear systems. IEEE Trans. Automat. Control, AC-21 (1976), 203–212.

    Article  MATH  MathSciNet  Google Scholar 

  32. N. Tomizawa and M. Iri, An algorithm for determining the rank of a triple matrix productAXB with application to the problem of discerning the unique solution in a network. Electron. Comm. Japan,57-A (1974), 50–57.

    MathSciNet  Google Scholar 

  33. N. Tomizawa and M. Iri, An algorithm for solving the “independent assignment problem” with application to the problem of determining the order of complexity of a network (in Japanese). Trans. Inst. Electron. Comm. Engin. Japan57A (1974) 627–629.

    MathSciNet  Google Scholar 

  34. G. C. Verghese, B. C. Levy and T. Kailath, A generalized state-space for singular systems. IEEE Trans. Automat. Control, AC-26 (1981), 811–831.

    Article  MATH  MathSciNet  Google Scholar 

  35. B. L. van der Waerden, Algebra. Springer, Berlin, 1955.

    Google Scholar 

  36. D. J. A. Welsh, Matroid Theory. Academic Press, London, 1976.

    MATH  Google Scholar 

  37. T. Yamada and D. G. Luenberger, Generic properties of column-structured matrices. Linear Algebra Appl.65 (1985), 189–206.

    Article  MATH  MathSciNet  Google Scholar 

  38. E. L. Yip and R. F. Sincovec, Solvability, controllability, and observability of continuous descriptor systems. IEEE Trans. Automat. Control, AC-26 (1981), 702–707.

    Article  MATH  MathSciNet  Google Scholar 

  39. W. H. Cunningham, Matroid partition and intersection algorithms. Dept. Math. Stat., Carleton Univ., 1984.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Murota, K. Use of the concept of physical dimensions in the structural approach to systems analysis. Japan J. Appl. Math. 2, 471–494 (1985). https://doi.org/10.1007/BF03167086

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167086

Key words

Navigation