Applied Magnetic Resonance

, Volume 29, Issue 2, pp 375–384 | Cite as

High-frequency 180 GHz PELDOR

  • V. P. Denysenkov
  • T. F. Prisner
  • J. Stubbe
  • M. Bennati


For aromatic organic radicals, pulsed electron-electron double resonance (PELDOR) experiments at high magnetic fields offer the possibility to achieve orientation-selective pumping and detection that could allow one not only to determine the distance between paramagnetic species but also their relative orientation with respect to the interconnecting dipolar axis. We present a PELDOR two-frequency setup that was introduced into our homebuilt 180 GHz pulsed electron paramagnetic resonance (EPR) spectrometer and we discuss its technical and experimental features. The capability of 180 GHz PELDOR has been tested using the three-pulse ELDOR sequence on the protein RNR-R2 (ribonucleotide reductase) fromEscherichia coli, which contains two tyrosyl radicals at a distance of 3.3 nm. At 180 GHz, orientation selectivity is observed and the modulation frequency was found in good agreement with theoretical predictions, which take into account the relative orientation of the radicals from X-ray data.


Pump Pulse Ribonucleotide Reductase Orientation Selectivity Detection Pulse Tyrosyl Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Milov A.D., Ponomarev A.B., Tsvetkov Yu.D.: Chem. Phys. Lett.110, 67 (1984)CrossRefADSGoogle Scholar
  2. 2.
    Jeschke G.: Macromol. Rapid Commun.23, 227–246 (2002)CrossRefGoogle Scholar
  3. 3.
    Hara H., Kawamori A., Astashkin A.V., Ono T.: Biochim. Biophys. Acta1276, 140–146 (1996)CrossRefGoogle Scholar
  4. 4.
    Elsässer C., Brecht M., Bittl R.: J. Am. Chem. Soc.124, 12606–12611 (2002)CrossRefGoogle Scholar
  5. 5.
    Bennati M., Weber A., Antonic E., Perlstein D., Robblee J., Stubbe J.: J. Am. Chem. Soc.125, 14988–14989 (2003)CrossRefGoogle Scholar
  6. 6.
    Schiemann O., Weber A., Edwards T.E., Prisner T.F., Sigurdsson S.T.: J. Am. Chem. Soc.125, 3434–3435 (2003)CrossRefGoogle Scholar
  7. 7.
    Schiemann O., Piton N., Mu Y., Stock G., Engels J.W., Prisner T.F.: J. Am. Chem. Soc.126, 5722–5729 (2004)CrossRefGoogle Scholar
  8. 8.
    Jeschke G., Wegener C., Nietschke M., Jung H., Steinhoff H.J.: Biophys. J.86, 2551–2557 (2004)CrossRefADSGoogle Scholar
  9. 9.
    Carl P., Heilig R., Maier D.C., Höfer P., Schmalbein D.: Bruker Rep.154, 35–37 (2004)Google Scholar
  10. 10.
    Rohrer M., Brügmann G., Kinzer B., Prisner T.F.: Appl. Magn. Reson.21, 257–274 (2001)CrossRefGoogle Scholar
  11. 11.
    Högborn M., Galander M., Andersson M., Kolberg M., Hofbauer W., Lassmann G., Nordlund P., Lendzian F.: Proc. Natl. Acad. Sci. USA100, 3209–3214 (2003)CrossRefADSGoogle Scholar
  12. 12.
    Larsen R.G., Singel D.J.: J. Chem. Phys.98, 5134–5146 (1993)CrossRefADSGoogle Scholar
  13. 13.
    Gerfen G., Bellew B.F., Un S., Bollinger J.M., Stubbe J., Griffin R.G., Singel D.: J. Am. Chem. Soc.115, 6420–6421 (1993)CrossRefGoogle Scholar
  14. 14.
    Milov A.D., Nanmov B.D., Tsvetkov Yu.D.: Appl. Magn. Reson.26, 587 (2004)CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • V. P. Denysenkov
    • 1
  • T. F. Prisner
    • 1
  • J. Stubbe
    • 2
  • M. Bennati
    • 1
  1. 1.Institute for Physical and Theoretical Chemistry and Center for Biomolecular Magnetic ResonanceJ. W. Goethe UniversityFrankfurt am MainGermany
  2. 2.Department of Chemistry and BiologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations