Skip to main content
Log in

Evidence for the development of persistent carbon-centered radicals from a benzyl phenolic antioxidant: an electron paramagnetic resonance study

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Radicals have been generated from the benzyl phenolic antioxidant 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl) benzene, carrying out oxidative and hydrogen abstraction reactions. Transient phenoxyl radicals were directly visualized but only persistent carbon-centered radicals were monitored by electron paramagnetic resonance (EPR). The experimental EPR results let us rationalize our analysis as the sum of two different radicals. One, called the methylene radical, developed from the loss of a benzylic hydrogen gave place to a doublet of triplets witha HCH ≅2.7 mT anda HPH =0.165 mT. Besides, the methyl radical, developed after an intramolecular hydrogen transfer involving a methyl group on the central aromatic ring of the molecule, formed a triplet of triplets, witha H1 around 0.060 mT anda H2 =0.169 mT. All the contact interactions were tested by EPR simulation of the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. EPA High Production Volume Program 201-15483a. Test Plan for Irganox 1330/Ethanox 330. 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene. CAS No 1709-70-02. July 30, 2004. Submitted by Ciba Specialty Chemicals and Albemarle Corporation.

  2. Burton G.W., Doba T., Gabe E.J., Hughes L., Lee F.L., Prasad L., Ingold K.U.: J. Am. Chem. Soc.107, 7053–7064 (1985)

    Article  Google Scholar 

  3. McFaul P.A., Ingold K.U., Lusztyk J.: J. Org. Chem.61, 1316–1321 (1996)

    Article  Google Scholar 

  4. Pospisil J., Nespurek S.: Polym. Degrad. Stab.49, 99–110 (1995)

    Article  Google Scholar 

  5. Mulder P., Saastad O.W., Griller D.: J. Am. Chem. Soc.110, 4090–4092 (1988)

    Article  Google Scholar 

  6. Wright J.S., Carpenter D.J., McKay D.J., Ingold K.U.J.: Am. Chem. Soc.119, 4245–4252 (1997)

    Article  Google Scholar 

  7. Wright J.S., Johnson E.R., DiLabio G.A.: J. Am. Chem. Soc.123, 1173–1183 (2001)

    Article  Google Scholar 

  8. Franchi P., Lucarini M., Pedulli G.F., Valgimigli L., Lunelli B.: J. Am. Chem. Soc.121, 507–514 (1999)

    Article  Google Scholar 

  9. Ngaoka S., Kuranaka A., Tsuboi H., Nagashima U., Mukai K.: J. Phys. Chem.96, 2754–2761 (1992)

    Article  Google Scholar 

  10. Zang H.Y., Wang L.F.: J. Phys. Chem. A107, 11258–11259 (2003)

    Article  Google Scholar 

  11. Barret J., Gijsman P., Swatgen J., Lange R.M.F.: Polym. Degrad. Stab.75, 367–374 (2002)

    Article  Google Scholar 

  12. Matsuura T., Ohkatsu Y.: Polym. Degrad. Stab.70, 59–63 (2000)

    Article  Google Scholar 

  13. Bennett J.E.: Nature186, 385–386 (1960)

    Article  ADS  Google Scholar 

  14. Cook C.D., Norcross B.E.: J. Am. Chem. Soc.78, 3797–3799 (1956)

    Article  Google Scholar 

  15. Lucarini M., Pedulli G.F., Cipollone M.: J. Org. Chem.59, 5063–5070 (1994)

    Article  Google Scholar 

  16. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Zakrzewski V.G., Montgomery J.A. Jr., Stratmann R.E., Burant J.C., Dapprich S., Millam J.M., Daniels A.D., Kudin K.N., Strain M.C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J.W., Petersson G.A., Ayala P.Y., Cui Q., Morokuma K., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Cioslowski J., Ortiz J.V., Baboul A.G., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gompertz R., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P.M.W., Johnson B.G., Chen W., Wong M.W., Andres J.L., Head-Gordon M., Replogle E.S., Pople J.A.: Gaussian 98, Rev. A7, Gaussian, Inc., Pittsburgh PA, 1998.

    Google Scholar 

  17. Mckelvey, Ronald D. ESR Simulator. Department of Chemistry. University of Wisconsin-LaCrosse, USA. 1986.

    Google Scholar 

  18. Wertz J.E., Bolton J.R.: Electron Spin Resonance. Elementary Theory and Practical Applications. New York: McGraw-Hill 1972.

    Google Scholar 

  19. Pannell J.: Chem. Ind. (London) 1797–1800 (1962)

  20. Aliaga C., Aspée A., Scaiano J.C.: Org. Lett.5, 4145–4148 (2003)

    Article  Google Scholar 

  21. Borges dos Santos R.M., Martinho Simoes J.A.: J. Phys. Chem. Ref. Data27, 707–739 (1998)

    Article  ADS  Google Scholar 

  22. Lide D.R., Frederikse H.P.R.: CRC Handbook of Chemistry and Physics, 75th edn., pp. 9–64. Boca Raton, Fla.: CRC Press 1994–1995.

    Google Scholar 

  23. Valgimigli L., Banks J.T., Ingold K.U., Lusztyk J.: J. Am. Chem. Soc.117, 9966–9971 (1995)

    Article  Google Scholar 

  24. Wayner D.D.M., Lusztyk E., Ingold K.U., Mulder P.: J. Org. Chem.61, 6430–6433 (1996)

    Article  Google Scholar 

  25. Howard A.J.: Free Radicals (Kochi J.K., ed.), p. 42, Vol. 2, chapt. 12, New York: Wiley 1973.

    Google Scholar 

  26. Alberti A., Benaglia M., Macciantelli D.: Org. Lett.2, 1553–1555 (2000)

    Article  Google Scholar 

  27. Yamada B., Sakamoto K.: Polymer41, 5619–5623 (2000)

    Article  Google Scholar 

  28. Kochi J.K. in: Free Radicals (Kochi J.K., ed.), vol. 2, chapt. 23. New York: Wiley 1973.

    Google Scholar 

  29. Konkin A.L., Roth H.K., Schroedner M., Nazmutdinova G.A., Aganov A.V., Ida T., Garipov R.R.: Chem. Phys.287, 377–389 (2003)

    Article  Google Scholar 

  30. Sordo T.L., Dannenberg J.J.: J. Org. Chem.64, 1922–1924 (1999)

    Article  Google Scholar 

  31. Karady S., Abramson N.L., Dolling U.-H., Douglas G.J., McManemin G.J., Marcune B.: J. Am. Chem. Soc.117, 5425–5426 (1995)

    Article  Google Scholar 

  32. Wu Y-D., Wong C.-L., Chan K.W.K., Ji G.Z., Jiang X.-K.: J. Org Chem.61, 746–750 (1996)

    Article  Google Scholar 

  33. Kreilick R.W., Weissman S.L.: J. Am. Chem. Soc.88, 2645–2652 (1966)

    Article  Google Scholar 

  34. Isbom C., Hrovat D.A., Borden W.T., Mayer J.M., Carpenter B.C.: J. Am. Chem. Soc.127, 5794–5795 (2005)

    Article  Google Scholar 

  35. Foti M., Ingold K.U., Lusztyk J.: J. Am. Chem. Soc.116, 9440–9447 (1994)

    Article  Google Scholar 

  36. Mayer J.M., Hrovat D.A., Thomas J.L., Borden W.T.: J. Am. Chem. Soc.124, 11142–11147 (2002)

    Article  Google Scholar 

  37. Atkins P.W.: Physical Chemistry, 5th edn., pp 216–217. Oxford: Oxford University Press 1994.

    Google Scholar 

  38. Griller D., Marriot P.R., Preston K.F.: J. Chem. Phys.71, 3703–3707 (1979)

    Article  ADS  Google Scholar 

  39. Griller D., Ingold K.U., Krusic P.J., Fischer H.: J. Am. Chem. Soc.100, 6750–6752 (1978)

    Article  Google Scholar 

  40. Griller D., Preston K.F.: J. Am. Chem. Soc.101, 1975–1979 (1979)

    Article  Google Scholar 

  41. Griller D., Ingold K.U.: Acc. Chem. Res.13, 194–200 (1980)

    Google Scholar 

  42. Griller D.: J. Am. Chem. Soc.100, 5240–5241 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Mendiara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendiara, S.N., Coronel, M.E.J. Evidence for the development of persistent carbon-centered radicals from a benzyl phenolic antioxidant: an electron paramagnetic resonance study. Appl. Magn. Reson. 30, 103–120 (2006). https://doi.org/10.1007/BF03166985

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166985

Keywords

Navigation